

JANUARY 25-27 2018

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE

Different arch branched devices are available, is morphology the main criteria of choice?

Ciro Ferrer, MD

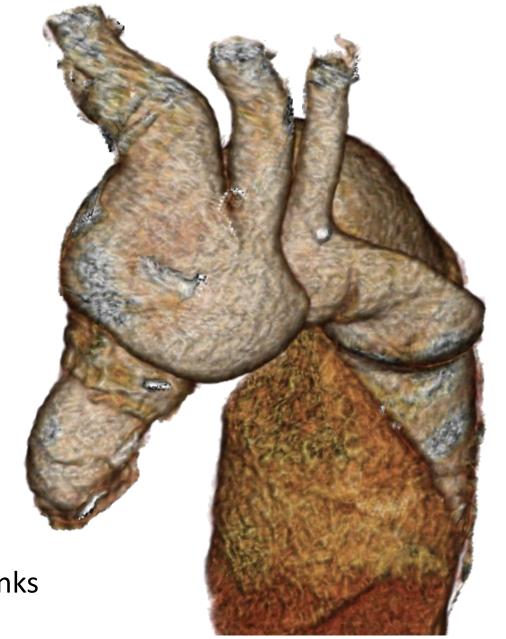
Vascular Surgery Unit "Sapienza" University of Rome

Disclosure

Speaker name:

Ciro Ferrer

☐ Proctoring/speaking fee: Bolton Medical


Critical issues in endovascular arch repair

✓ Proximal landing zone

- Lenght
- Size
- Angulation
- Discrepancy with distal landing zone

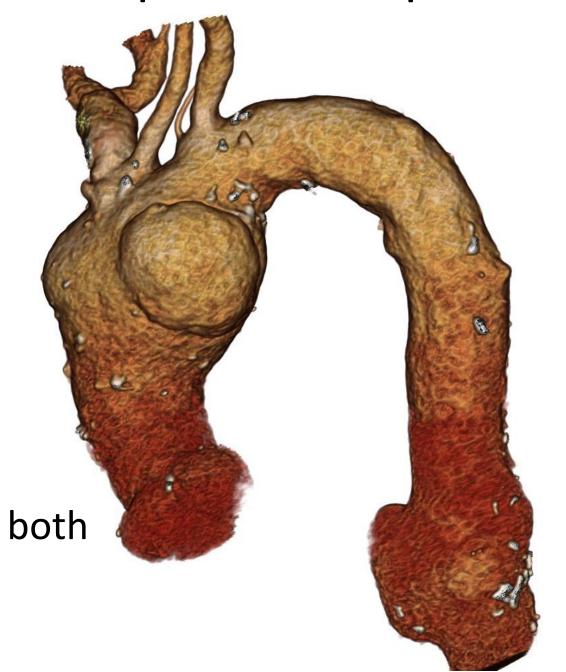
✓ Arch variability

- Anatomical variations
- Variable branch vessels take off
- Dissected arch
- Dissected supra-aortic trunks

Critical issues in endovascular arch repair

✓ Proximity to coronary ostia and aortic valve

- ✓ LV catheterization
- ✓ Rapid pacing deployment
- ✓ Hybrid adjunct
- ✓ Large caliber access vessels


Dedicated devices to preserve supra-aortic trunks perfusion

✓ Off-the-shelf

- Branched
- Fenestrated

✓ Custom-made

- Branched
- Fenestrated
- Combination of both
- Scalloped

Current dedicated devices

- ✓ Off-the-shelf
 - Gore TBE
 - Medtronic Mona-LSA
 - Endospan Nexus

✓ Custom-made

- Cook
- Bolton
- Najuta

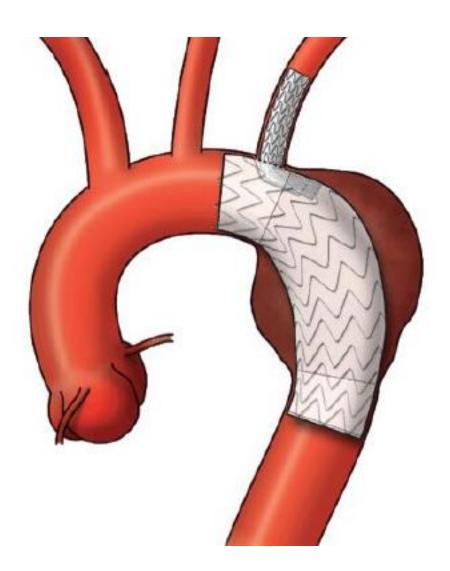
Gore TBE

Device Overview

Aortic main body

 Single inner retrograde branch

Dedicated side branch


component

 Aortic extender (optional)

Gore TBE

Procedural steps

Step 1:

- Catheterization of ascending aorta and branch vessel from below

Step 2:

- Introduction of aortic main body over both guidewires

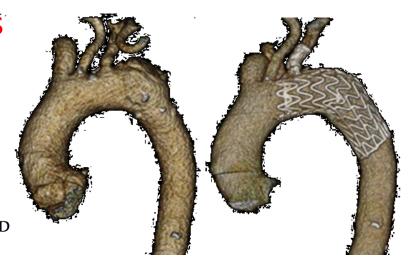
Step 3:

- Deployment of aortic main body

Step 4:

- Introduction of sheath into branch vessel

Step 5:


- Deployment of side branch component

Gore TBE

Results

Branched Endovascular Therapy of the Distal Aortic Arch: Preliminary Results of the Feasibility Multicenter Trial of the Gore Thoracic Branch Endoprosthesis

Himanshu J. Patel, MD, Michael D. Dake, MD, Joseph E. Bavaria, MD, Michael J. Singh, MD, Mark Filinger, MD, Michael P. Fischbein, MD, PhD, David M. Williams, MD, Jon S. Matsumura, MD, and Gustavo Oderich, MD

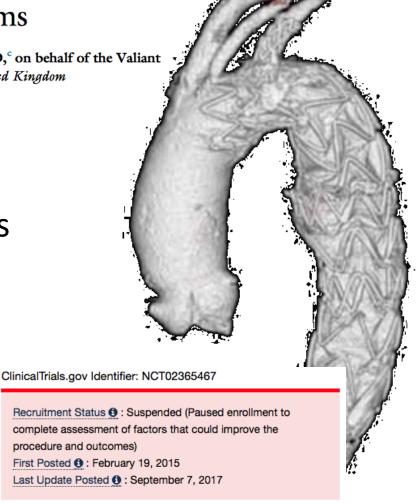
- 22 patients with distal arch aneurysm (landing zone 2)
 - Fusiform (10)
 - Saccular (12)
- LSA Patency: 100%
- Stroke: 0%
- Type I endoleaks
 - Intraprocedural: 18%
 - 1-month: 0%
- Survival: 94.7% @ 6 months (1 death for ascending aorta aneurysm rupture in a patient scheduled for elective repair)

Medtronic Valiant Mona LSA

Aortic main body

 Single volcano docking zone

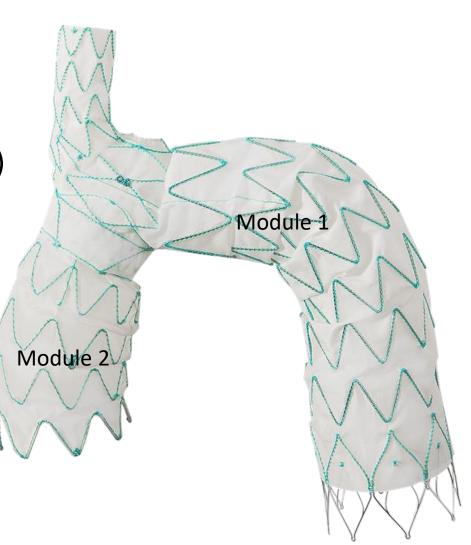
 Dedicated side branch component

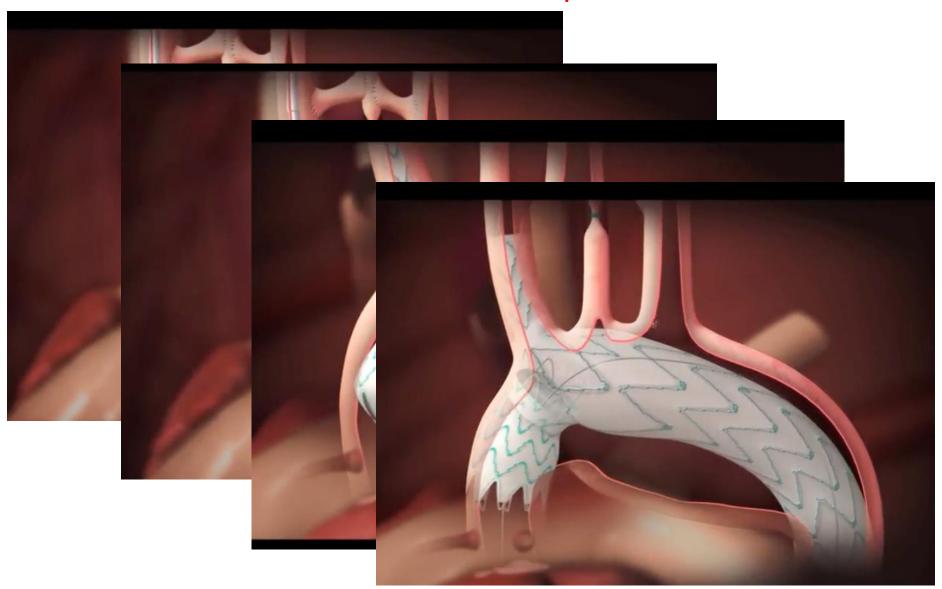

Medtronic Valiant Mona LSA

Results

Results of the Valiant Mona LSA early feasibility study for descending thoracic aneurysms

Eric E. Roselli, MD, Frank R. Arko III, MD, and Matthew M. Thompson, MD, on behalf of the Valiant Mona LSA Trial Investigators, Cleveland, Ohio; Charlotte, NC; and London, United Kingdom

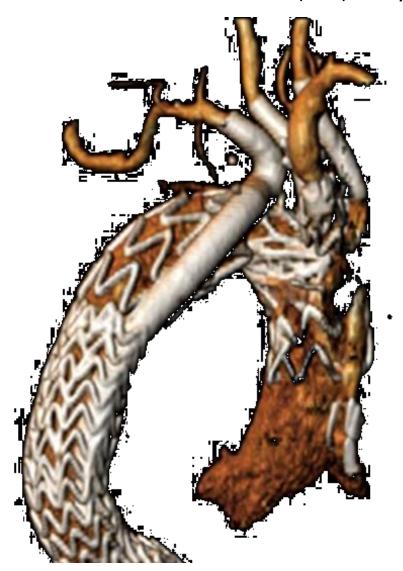

- 9 subjects enrolled
- No 30-day death
- 4 (50%) endoleaks in 8 pts
 - ►2 Type II
 - ▶ 2 Undetermined
- No Major strokes
- 4 minor strokes in 3 pts (33%)
- No L arm ischemia


Device Overview

- Two-component system
- Pre-curved ascending module
- Elliptic tantalum docking ring
- Fenestration for LCCA (optional)
- 20 Fr delivery system

Procedural steps

Results


First-in-man (FIM) study + compasionate cases

Event	# of Patients	Details
Technical success	13/13	
Death	2/13	FIM #1: 11 days post implantation, due to Respiratory failure
		Compassionate #3: 2 days post implantation, due to MI
Stroke	Stroke 4/13 Permanent deficits 0/13	FIM #1: left side hemiparesis
		FIM #5: right arm paresis
		Compassionate #1: right side hemi-syndrome
		Compassionate #4: right arm paresis
Spinal Cord Ischemia	1/13	Compassionate #4: arch and descending aneurysms CSFD post implantation, patient recovered
Endoleak type Ia or III (> 30-day)	1/11	Compassionate #2: Type III Endoleak at 3 month follow up In addition 2/11 Type Ib (gutters of PG)

Presented by David Planer, MD @ ICI 2015, Tel-Aviv

Results

First-in-man (FIM) study + compasionate cases

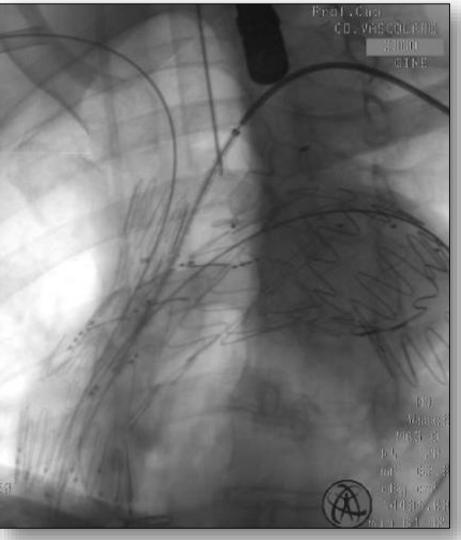
6/13 periscope grafts for LSA

Presented by David Planer, MD @ ICI 2015, Tel-Aviv

Device Overview

 Aortic main body (custom-made)

 Two inner antegrade branches


 Custom-made limb for IA – covered stent for LCCA

Pre-curved system

Procedural steps

Results

Global experience with an inner branched arch endograft

Stéphan Haulon, MD, PhD, a Roy K. Greenberg, MD, Rafaëlle Spear, MD, Matt Eagleton, MD, Cherrie Abraham, MD, Christos Lioupis, MD, Eric Verhoeven, MD, PhD, Krassi Ivancev, MD, Tilo Kölbel, MD, PhD, Brendan Stanley, MD, Timothy Resch, MD, Pascal Desgranges, MD, PhD, Blandine Maurel, MD, Blayne Roeder, PhD, Timothy Chuter, MD, and Tara Mastracci, MD

38 patients

30-day mortality 13.2% (7.1% in the last 28 cases)

Technical success 84.2%

Secondary procedures 10.5%

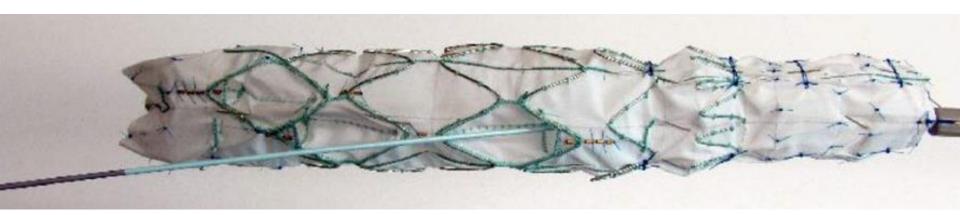
Neurologic complications 15.8% (Stroke 5.2%)

Subsequent Results

Editor's Choice — Subsequent Results for Arch Aneurysm Repair with Inner Branched Endografts,[☆]

R. Spear ^a, S. Haulon ^{a,*}, T. Ohki ^b, N. Tsilimparis ^c, Y. Kanaoka ^b, C.P.E. Milne ^a, S. Debus ^c, R. Takizawa ^b, T. Kölbel ^c

	Group 1	Group 2	р
	(n = 38)	(n = 27)	
Procedure			
Length (min)	250 (210-330)	295 (232-360)	.35
X-ray time (min)	46 (32-84)	39.3 (34-61)	.07
Volume of contrast	150 (95-207)	183 (120-290)	.03
(mL)			
Early post-operative			
Endoleaks	11 (28.9%)	3 (11.1%)	.08
Secondary procedures	4 (10.5%)	4 (14.8%)	.61
Cerebrovascular	6 (15.8%)	3 (11.1%)	.60
events			
Systemic	17 (44.7%)	13 (43.3%)	.79
complications			
Mortality	5 (13.2%)	0 (0%)	.05
Follow up $(n = 33)$			
Endoleaks	3 (9.1%)	2 (7.4%)	.82
Secondary procedures	3 (9.1%)	2 (7.4%)	.82
Mortality	4 (12.1%)	1 (3.7%)	.24
Overall mortality	9 (23.6%)	1 (3.7%)	.02


Group 1: early experience study.4

Group 2: current study.

Total endovascular arch repair with **triple branch stent graft**Device Overview

Custom-made stent graft

 Third branch for LSA (retrograde and pre-catheterized)

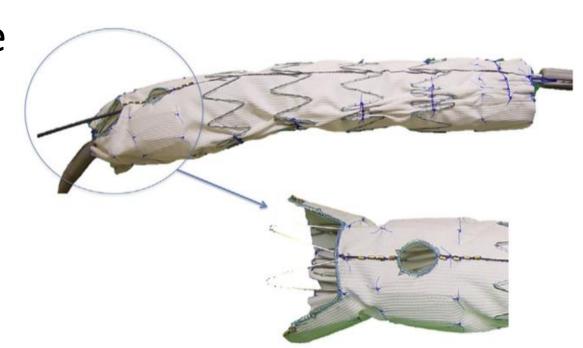
Total endovascular arch repair with triple branch stent graft

Results

Total Endovascular Treatment of Aortic Arch Disease Using an Arch Endograft With 3 Inner Branches

Rafaëlle Spear, MD, PhD¹, Rachel E. Clough, MD, PhD¹, Dominique Fabre, MD, PhD², Blayne Roeder, PhD³, Adrien Hertault, MD¹ Teresa Martin Gonzalez, MD, PhD¹, Richard Azzaoui, MD¹, Jonathan Sobocinski, MD, PHD¹, and Stéphan Haulon, MD, PhD¹

3 post-dissection aneurysms

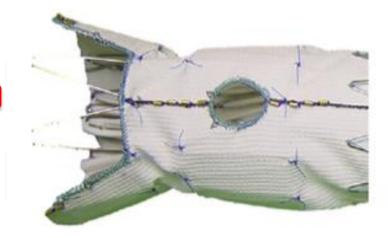

No death or branch vessel loss of patency at 6m

Cook Arch fenestrated device

Device Overview

 Custom-made stent graft

Proximal scallop (optional)


Cook Arch fenestrated device

Results

Branched versus fenestrated endografts for endovascular repair of aortic arch lesions

Nikolaos Tsilimparis, MD, PhD,^a E. Sebastian Debus, MD, PhD,^a Yskert von Kodolitsch, MD, PhD,^b Sabine Wipper, MD, PhD,^a Fiona Rohlffs, MD,^a Christian Detter, MD, PhD,^c Blayne Roeder, PhD,^d and Tilo Kölbel, MD, PhD,^a Hamburg, Germany; and Bloomington, Ind

	fTEVAR $(n = 15)$	bTEVAR $(n = 14)$	P
Procedure time, minutes	153 ± 23	270 ± 26	.02
Fluoroscopy time, minutes	36 ± 8	47 ± 8	NS
Intensive care unit stay, days	3.3 ± 1.2	3.8 ± 0.6	NS
Hospital stay, days	7 ± 5	14 ± 8	.02
Thirty-day mortality	3 (20)	0	NS
Myocardial infarction	0	1 (7)	NS
Relevant respiratory complications	2 (14)	0	NS
Major stroke	2 (14)	1 (7)	NS
Retrograde type A dissection	O	Ò	NS
Cardiac infarction	1	0	NS
Acute kidney injury (no dialysis)	2 (14)	1 (7)	NS
Acute kidney injury (dialysis)	Ò	Ò	NS
Pancreatitis	0	1 (7)	NS
Access site complications (minor and major)	3 (20)	1 (7)	NS

Bolton Arch branched device

Device Overview

 Aortic main body (custom-made)

 Wide window for two inner antegrade branches

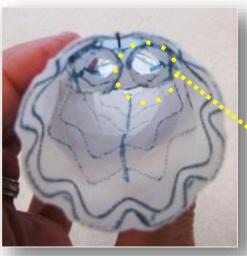
Custom-made limbs for IA and LCCA

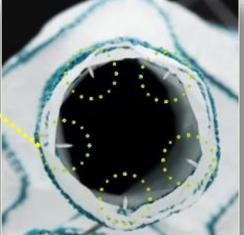
Dual Sheath and Pre-curved system

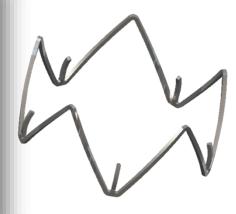
Bolton Arch branched device

Procedural steps

LCCA - LSA Bypass


Main Body Deployment




BCT Branch Deployment

LCCA Branch Deployment

Bolton Arch branched device

Results

Orthotopic branched endovascular aortic arch repair in patients who cannot undergo classical surgery

Martin Czerny^a, Bartosz Rylski^a, Julia Morlock^a, Holger Schröfel^a, Friedhelm Beyersdorf^a, Bertrand Saint Lebes^b, Olivier Meyrignac^b, Fatima Mokrane^b, Mario Lescan^c, Christian Schlensak^c, Constatijn Hazenberg^d, Trijntje Bloemert-Tuin^d, Sue Braithwaite^{d,e}, Joost van Herwaarden^{d,*} and Herve Rousseau^b

Parameters	n = 15
Early endoleaks	
Type I and III	1 (7)
Type II	1 (7)
Late endoleaks	
Type I and III	0 (0)
Type II	1 (7)
Follow-up period	
Follow-up time (days)	263 (84; 564)
Intensive care unit stay (days)	4 (1; 8)
In-hospital stay (days)	14 (9; 18)
In-hospital mortality rate	1 (7)
Disabling stroke	1 (7)
Aortic-related deaths during the follow-up period	0
All-cause deaths at follow-up	4 (27)

Eur J Cardiothorac Surg 2018

Bolton Arch scallop device

Device Overview

 Custom-made stent graft

Fenestration (optional)

Bolton Arch scallop device

Results

J Endovasc Ther. 2017 Feb;24(1):97-106. doi: 10.1177/1526602816674942. Epub 2016 Nov 4.

Results From a Nationwide Registry on Scalloped Thoracic Stent-Grafts for Short Landing Zones.

van der Weijde E¹, Bakker OJ^{1,2}, Tielliu IF³, Zeebregts CJ³, Heijmen RH¹.

- 23 pts with PROX SCALLOP TEVAR
- Scallop used for LSA (17); LCCA (5) IA (1)
- CAR-CAR/CAR-LSA (4)

In-hospital mortality	3%
Peri-op stroke	3%
	20/2

Vessel patency @meanFU9.7m 29/30

Najuta Arch fenestrated device

Device Overview

 Aortic main body (semi custom-made)

Single piece system

Up to 3 fenestrations

No stent required for arch branches

Only proximal and distal suture

Najuta Arch fenestrated device

Assessment of proximal landing zone

Najuta Arch fenestrated device

Results

A Challenging Treatment for Aortic Arch Aneurysm With Fenestrated Stent Graft

Koichi Yuri, MD, PhD, Naoyuki Kimura, MD, PhD, Daijiro Hori, MD, Atsushi Yamaguchi, MD, PhD, and Hideo Adachi, MD, PhD

Department of Cardiovascular Surgery, Saitama Medical Center of Jichi Medical University, Saitama, Japan

54 arch aneurysms (mainly saccular)

Operative Mortality: 3.7%

• Stroke: 5.5%

Survival 75% @ 41.4 months

• Endoleak: 7,4%

Secondary Interventions: 5.5%

 Off-the-shelf single branch arch devices (Gore TBE and Medtronic Mona LSA) were born for treatment of distal arch disease

- All patients included in the Trials were treated in landing zone 2
- 10-15 mm between LCCA and LSA $+ \ge 5$ mm distally to LSA required

 Endospan Nexus is the only off-the-shelf arch device intended for use in landing zone 0

- Single branch for IA and optional fenestration for LCCA
- More data and longer follow-up needed to test this modular system (disconnection resistance???)

 Cook and Bolton double branch custom-made devices are the most investigated in the treatment of extensive arch disease (landing zone 0)

- Strict adherence to inclusion and exclusion criteria (especially size and length of proximal sealing zone)
- Effect of learning curve
- Toward total endovascular approach (3 branches)

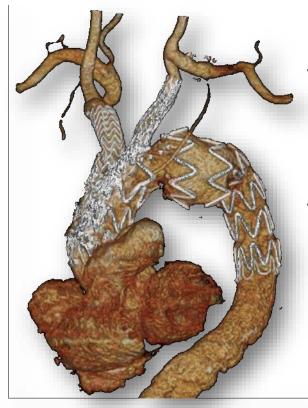
 Fenestrated and Scalloped custom-made stent grafts provided by Cook and Bolton and Najuta Fenestrated device are preferable for...

- distal arch disease

- extending proximal landing zone
- saccular aneurysm
- aneurysm of the inner curvature

Conclusion (I)

 Choice of different models of arch stent grafts are stricly related to the extension of the disease


- Shift to a more proximal landing zone (from 1 to 0) can assure a longer durability but should be balanced with the complexity of the procedure

 Fenestrated or scalloped devices may be effective in the treatment of saccular aneurysm, especially if located in the inner curvature

Conclusion (II)

- Inner antegrade branched devices should be preferred for more extensive and fusiform aneurysms

- Off-the-shelf single branch devices
 will be usefull in emergencies
- Custom-made inner branched stent grafts should be developed to limit as much as possible hybrid adjuncts (3 branches)
- Current arch stent grafts are now limited to an investigational use and more data are needed to test their efficacy especially in the long-term