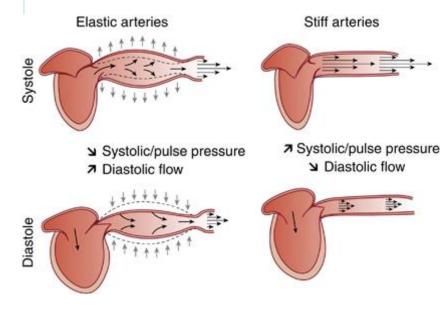


CONTROVERSIES & UPDATES

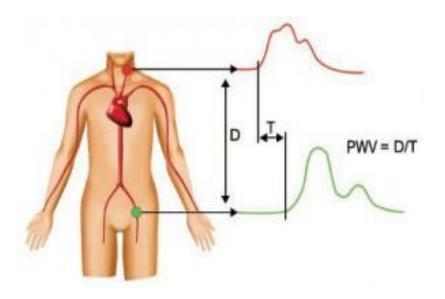
JANUARY 25-27 2018 C MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG


Does TEVAR affect the heart?

Christos D. Liapis, MD, FACS, FRCS, FEBVS Professor (Em) of Vascular Surgery National & Kapodistrian University of Athens Director Vascular & Endovascular Clinic Athens Medical Center

NO DISCLOSURES RELATED TO THE TOPIC

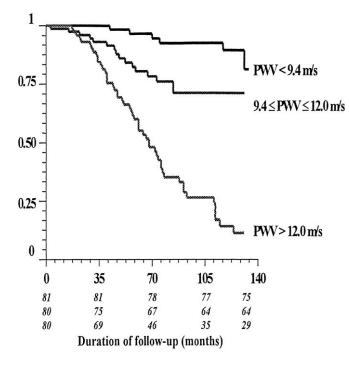
Arterial Stiffness and cardiac outcomes


Arterial stiffness has been correlated with long-term cardiovascular outcomes independent of traditional cardiovascular risk factors (e.g. hypertension, diabetes, obesity, dyslipidemia, smoking)

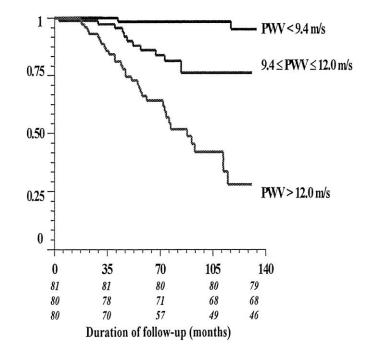
 Arterial stiffening results in increased pulse pressure, left ventricular hypertrophy, subendocardial ischemia, endothelial dysfunction and cardiac fibrosis

Pulse wave velocity (PWV) and cardiac outcomes

Pulse wave velocity (PWV): the gold standard method of arterial stiffness measurement and a strong independent predictor of cardiovascular morbidity and mortality.


Therapeutic modalities reducing PWV are associated with less cardiovascular events rate and improved prognosis

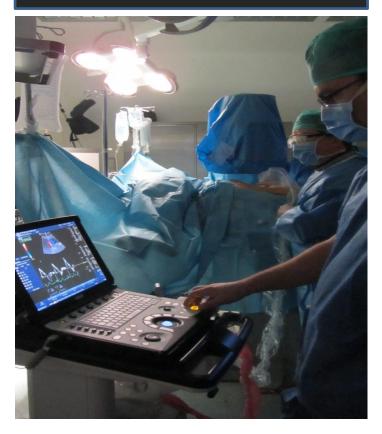
Aortic Stiffness


OVERALL SURVIVAL

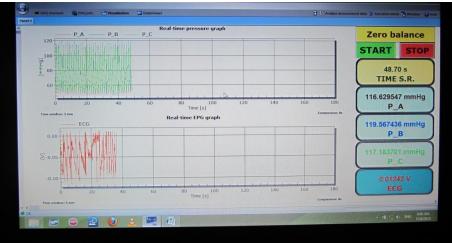
American

Heart Association。

CARDIOVASCULAR SURVIVAL

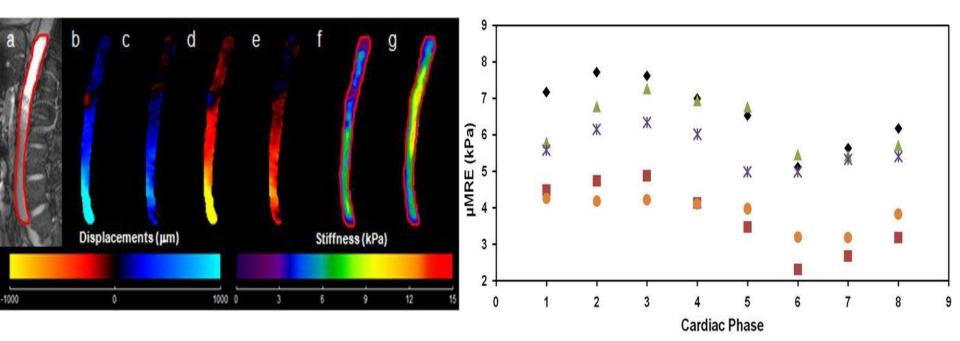


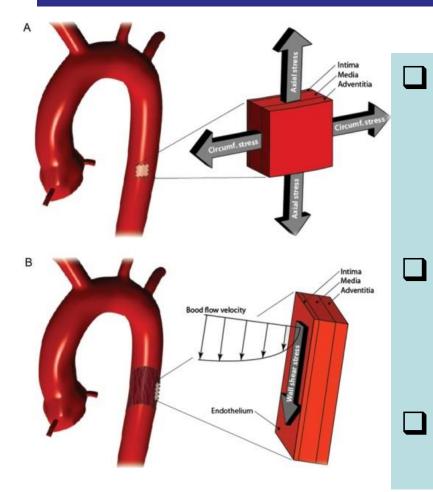
Probabilities of overall survival (A) and event-free survival (cardiovascular mortality, B) in study population according to level of PWV divided into tertiles.


Blacher J. et al Circulation. 1999;99:2434-2439

Changes in arterial stiffness in patients undergoing EVAR and TEVAR

Computational Fluid Dynamics Ongoing Trial




Cardiovascular magnetic resonance elastography

Magnetic resonance elastography (MRE) is a phase-contrast magnetic resonance imaging technique that measures tissue stiffness non-invasively.

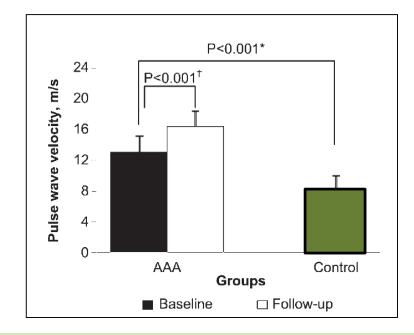
Khan S. et.al NMR in Biomedicine. 2017

Arterial stiffness in patients with abdominal (AAA) or thoracic aortic aneurysms (TAA)

Men with AAA presented with significantly elevated PWV levels compared to agematched controls

- Mean blood pressure, AAA
 diameter and age: independent
 determinants of PWV in AAA
- TAA is associated with increased augmentation index

Shingu Y, et al Ann Thorac Surg 2009; Kadoglou NPE, Liapis C et al J Endovasc Surg 2012


Arterial stiffness, circulating vascular calcification inhibitors and inflammatory mediators in pts with AAA

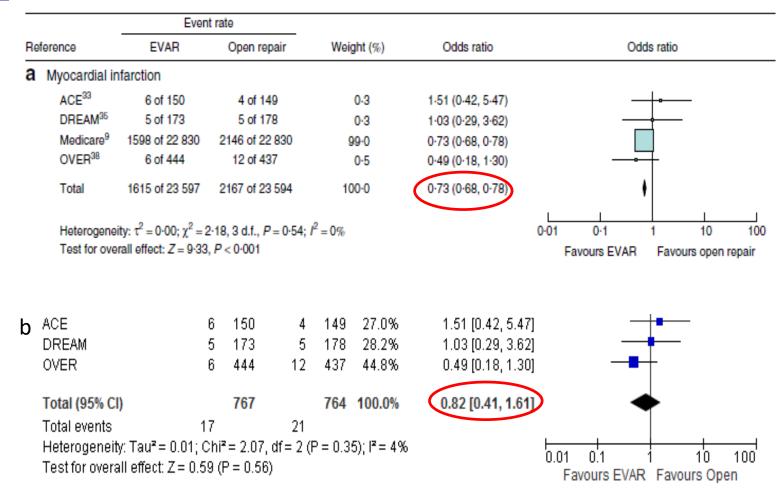
	AAA group (N=108)	CO group (N=42)	р
hsCRP (mg/L)	5.90 ± 2.05	2.96 ± 1.02	< 0.001
WBC (cells/µL)	9870 ± 2231	8850 ± 2001	0.039
TC (mg/dl)	218 ± 31	184 ± 48	0.118
HDL (mg/dl)	42 ± 11	45 ± 13	0.501
LDL (mg/dl)	137 ± 19	113 ± 22	0.098
TG	148 ± 56	130 ± 39	0.319
PWV (m/s)	12.99 ± 3.75	10.03 ± 1.57	< 0.001
Osteoprotegerin (pmol/L)	16.11 ± 3.01	12.13 ± 1.98	< 0.001
Osteopontin (ng/ml)	54.4 ± 16.05	42.33 ± 13.72	0.047
IL-6 (pg/ml)	5.51 ± 2.42	4.22 ± 1.63	0.038

	В	р
MBP	0.501	< 0.001
OPG	0.405	0.022
OPN	0.204	0.272
IL-6	0.251	0.189
AAA diameter	0.348	0.006

- PWV and hsCRP, WBC, IL-6, Osteoprotegerin were significantly upregulated in pts with AAA.
- Independent association of PWV with mean blood pressure, OPG and AAA diameter

Changes in arterial stiffness in patients undergoing AAA repair

Stent-graft implantation (n=48) was associated with significant increase in PWV 6 months following EVAR


Open surgical repair (n=39) of AAA induced modest increase of PWV and decreased by 8,5% the Augmentation index

- Kadoglou NP, Moulakakis KG, Liapis CD. Changes in aortic pulse wave velocity of patients undergoing endovascular repair of abdominal aortic aneurysms. J Endovasc Ther. 2012
- Lantelme P et al J Hypertens 2009

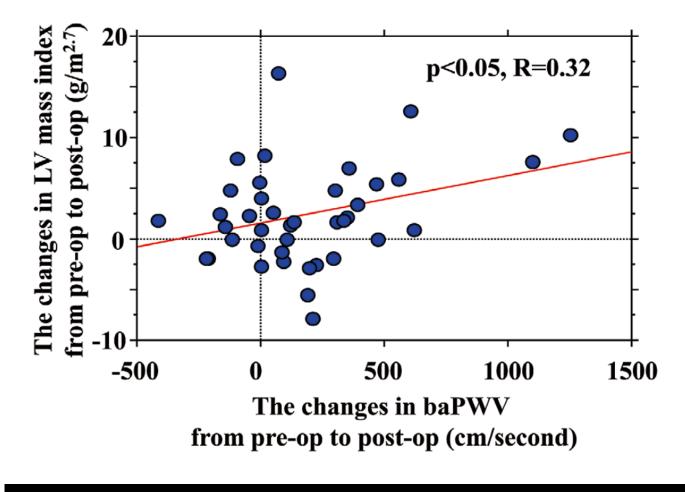
EVAR and cardiovascular Outcome

- A non-significant tendency toward cardiovascular deaths was apparent in the EVAR trial in the endovascular group during the 24-month interval.
- Cardiovascular mortality was primarily due to the poor general health status of those patients or the required secondary interventions.
- A harmful effect of even slight alterations in aortic stiffness induced by endografts should be considered.
- 1. Brown LC, et al. EVAR trial participants. Incidence of cardiovascular events and death after open or endovascular repair of abdominal aortic aneurysm in the randomized EVAR trial 1. Br J Surg. 2011
- Brown LC, et al. EVAR trial participants. Does EVAR alter the rate of cardiovascular events in patients with AAA considered unfit for open repair? Results from the randomized EVAR trial 2. Eur J Vasc Endovasc Surg. 2010

Short-term vs. long-term MI following EVAR and Open AAA Repair

Stather et.al British Journal of Surgery 2013; 100: 863-872

Cardiac effect of endovascular repair


Table 2. Baseline (Pre-Op) Characteristics of Patients and 7-Day (Post-Op) Outcomes After Endovascular Aortic Repair					
Characteristic	Pre-op (n=40)	Post-op (n=40)	P value		
Systolic blood pressure (mmHg)	131±15	128±15	0.075		
Diastolic blood pressure (mmHg)	76±8	72±9	<0.05		
Heart rate (beats/min)	65±10	69±12	<0.05		
baPWV (cm/s)	1,914±389	2,096±459	<0.05		
Inferior vena cava dimension (mm)	12±3	12±3	0.574		
LV volume index at end-diastole (ml/m ^{2.7})	28.3±4.9	29.1±4.0	0.096		
Left atrial volume index (ml/m ^{2.7})	13.7±4.4	15.4±4.6	<0.05		
LVEF (%)	68±5	67±4	0.127		
IVST at end-diastole (mm)	9.0±2.3	9.1±2.3	0.623		
LV PWT at end-diastole (mm)	8.7±1.1	8.9±0.9	0.118		
LV PWT at end-systole (mm)	15.0±2.0	15.1±2.1	0.749		
DWS	0.41±0.09	0.40±0.09	0.429		
LV mass index (g/m ^{2.7})	42±10	45±11	<0.05		
Relative wall thickness	0.35±0.05	0.35±0.04	0.663		
E/A ratio	7.8±1.3	0.78±0.20	0.427		
Deceleration time of E wave (ms)	244±37	243±39	0.886		
E' (cm/s)	7.8±1.3	7.8±1.5	0.773		
E/E' ratio	8.2±1.8	8.4±1.5	0.385		

Values are expressed as the mean \pm SD.

A, peak velocity of transmitral flow velocity curve at atrial contraction; baPWV, brachial-ankle pulse wave velocity; DWS, diastolic wall strain; E, peak early diastolic flow velocity of transmitral flow velocity curve; E', peak early diastolic velocity of the tissue Doppler imaging of the mitral annulus movement at septal position; EF, ejection fraction; IVST, interventricular septal thickness; LV, left ventricular; PWT, posterior wall thickness.

Takeda Y. et al Circ J 2014;78:322-328

Cardiac effect of endovascular repair

Positive correlation between PWV and LV mass

Takeda Y. et al Circ J 2014;78:322-328

EVAR alters cardiac structure and function

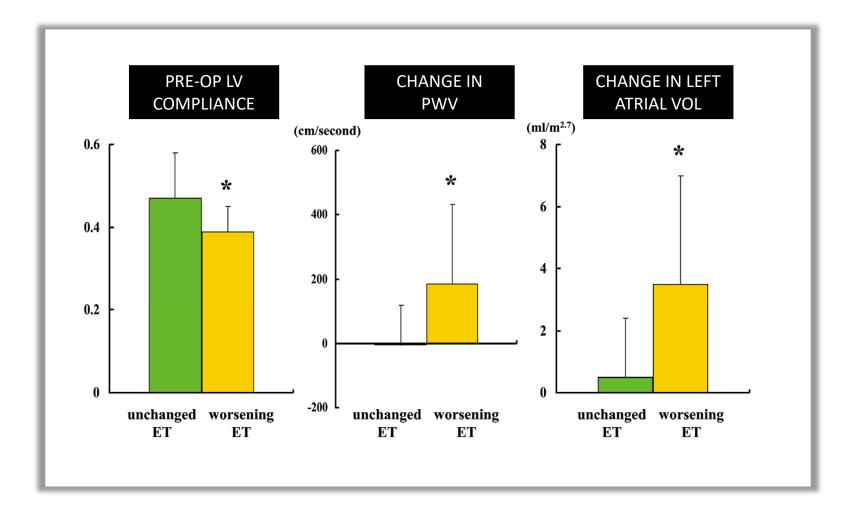

Aortic Repair			
Characteristic	Pre-op (n=22)	Follow-up (n=22)	P value
Specific activity scale score	6.0±1.6	5.3±1.9	<0.05
Systolic blood pressure (mmHg)	131±15	131±16	0.953
Diastolic blood pressure (mmHg)	75±8	74±10	0.476
Heart rate (beats/min)	64±9	62±10	0.283
baPWV (cm/s)	1,834±329	1,942±387	<0.05
Inferior vena cava dimension (mm)	12±3	12±2	0.606
LV volume index at end-diastole (ml/m ^{2.7})	29.2±4.8	27.2±4.4	<0.05
Left atrial volume index (ml/m ^{2.7})	14.0±5.3	16.2±4.7	<0.05
LVEF (%)	68±5	68±5	0.866
IVST at end-diastole (mm)	9.5±2.6	9.8±2.8	0.088
LV PWT at end-diastole (mm)	8.6±1.0	9.0±1.0	0.201
LV PWT at end-systole (mm)	15.0±1.7	14.8±2.4	0.646
DWS	0.42±0.09	0.38±0.10	0.066
LV mass index (g/m ^{2.7})	43±11	45±11	<0.05
Relative wall thickness	0.35±0.05	0.37±0.04	<0.05
E/A ratio	0.82±0.21	0.75±0.19	<0.05
Deceleration time of E wave (ms)	249±32	246±47	0.733
E' (cm/s)	7.8±1.5	7.3±1.8	0.060
E/E' ratio	8.5±1.7	8.6±2.1	0.052

Table 3. Baseline (Pre-Op) Characteristics of Patients and 1-Year (Follow-up) Outcomes After Endovascular

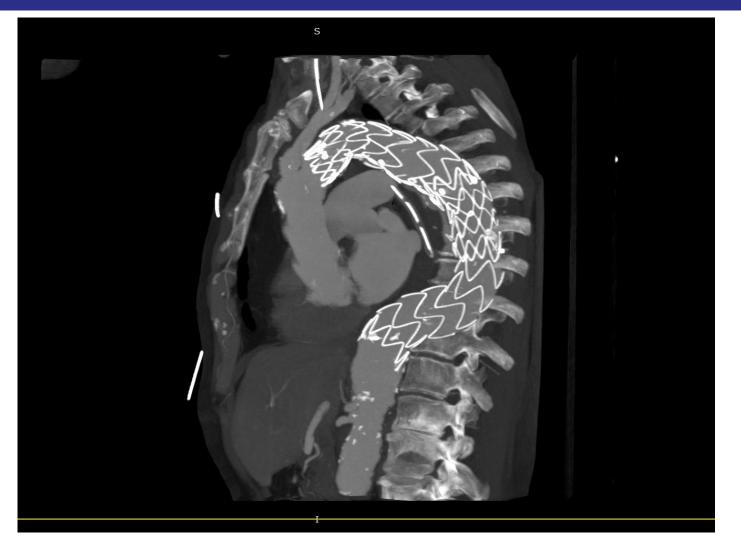
increased baPWV and induced left ventricular hypertrophy, left atrium enlargement and impaired diastolic function

Takeda Y et al Circ J 2014

Exercise tolerance

Takeda Y. et al Circ J 2014;78:322-328

Changes in Arterial Stiffness and N-terminal pro-brain natriuretic peptide Levels after Endovascular Repair of Descending Thoracic Aorta


Twenty-seven patients with TAA underwent elective TEVAR. Blood samples were obtained preoperatively, 24 hr, 48 hr, and 6 months postoperatively.

Serum levels of NT-proBNP were measured. PWV was determined before and 6 months after TEVAR.

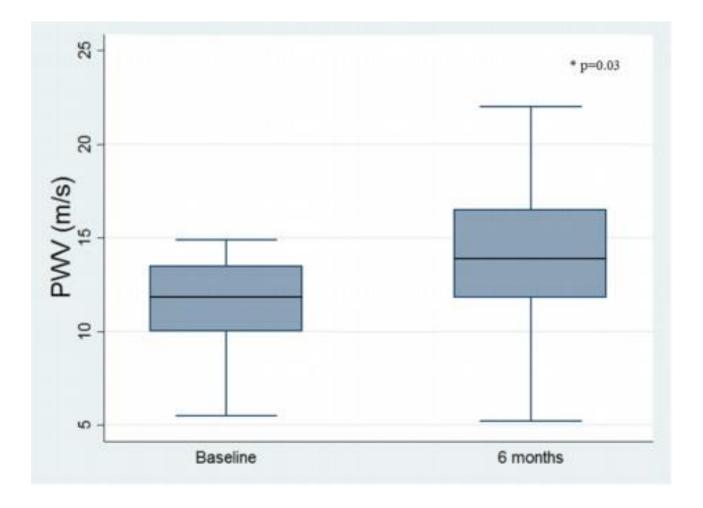
One-way analysis of variance by ranks was used to test the alterations in PWV (from baseline to 6 months) and NT-proBNP (along the 4 phases of evaluation). Post hoc analyses were appropriately performed.

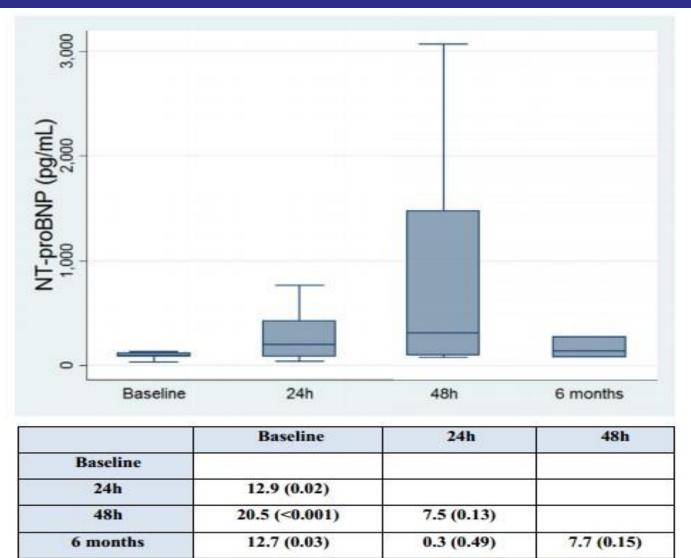
Arterial stiffness and thoracic endografts


M, 79y, Symptomatic 8cm TAA Medtronic VALIANT Thoracic 40X40, 46X46

Endovascular repair

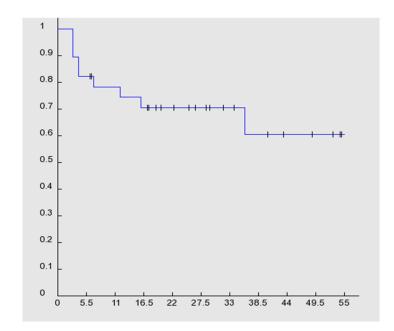
Centre Hospitalier Régional



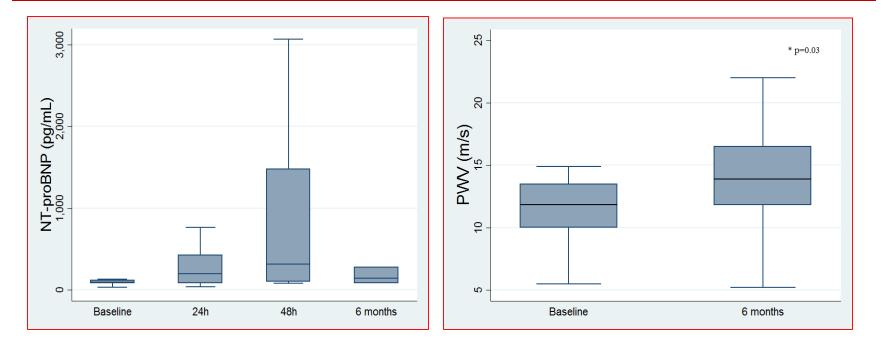

Proximal landing zone

Courtesy of Rachel Clough

PWV (m/sec) in baseline and 6 monts after TEVAR


NT-proBNP (pg/mL) among the different time points of evaluation after TEVAR

Arterial stiffness and NT-proBNP changes following TEVAR


Kaplan – Meier survival curve estimate in follow up

TEVAR Group, N=27, Baseline Characteristics				
Variable	Mean ± SD or n (%)			
Age (years)	68.8 ± 11.3			
Male Gender	24 (88.8)			
BMI (kg/m ²)	27.25 ± 4.6			
Indication for TEVAR				
Atherosclerotic Aneurysm	23 (85.2)			
Dissecting Aneurysm	2 (7.4)			
 Pseudoaneurysm 	1 (3.7)			
Intramural Hematoma	1 (3.7)			
TAA Diameter (N=26) (cm)	6.19 ± 1.3			
Chronic Obstructive Pulmonary Disease	7 (25.9)			
Dyslipidemia	11 (40.7)			
CAD	9 (33.3)			
Diabetes Mellitus	6 (22.2)			
Smoking	15 (55.5)			
Hypertension	19 (70.3)			
History of Ascending Aorta Reconstruction	1 (3.7)			
History of AAA Reconstruction	10 (37)			
Operative Characteristics				
 Aortic Pathology Length (cm) 	14.91±8.67			
 Subclavian Artery Coverage 	6 (22.2)			
Carotid - Subclavian Bypass	2 (7.4)			
Celiac artery Coverage	6 (22.2)			
 Number of endografts placed: 1/2/3 	13/11/3			
Duration of surgery (min)	121.7 ± 47.8			
Blood loss (mL)	164.7 ± 99.3			
Follow-up 23.4 ± 16.4				
30-day Mortality 0				
Mortality in Follow-up 9 (33.3)				

Follow-up: 23.4 ± 16.4 months (range 3-54 months). Overall Mortality : 33.3%

PWV and NT-proBNP changes in pts following TEVAR

Endovascular treatment of descending thoracic aortic aneurysms is associated with **significantly increased NT-proBNP levels and arterial stiffness**.

<u>An increased cardiac risk for patients with already impaired cardiac compensatory mechanism ?</u>

Differential effects of stent-graft fabrics on arterial stiffness in patients undergoing EVAR

Structural Characteristics of the Stent-Grafts Used in the Study				
Device Stent-Graft Structure		Fabric and Skeleton	Fixation	
Anaconda	Modular	Polyester and nitinol	Friction and hooks	
Excluder	Modular	ePTFE and nitinol	Anchors	
Talent	Modular	Polyester and nitinol	Suprarenal stent	
Endurant	Modular	Polyester and nitinol	Suprarenal stent with anchor pins on the proximal end	
Zenith FB	Modular	Polyester and stainless steel and nitinol	Suprarenal bare stent with anchoring barbs	

	PTFE (n=46)	Polyester (n=72)	р
Age, y	70±9	71±7	0.568
CAD	14 (30.4%)	29 (40.3%)	0.382
Diabetes	8 (17.4%)	15 (20.8%)	0.793
History of carotid surgery	3 (6.5%)	5 (6.9%)	0.482
Smokers			
Baseline	21 (45.6%)	24 (33.3%)	0.195
End	5 (10.9%)	6 (8.2%)	0.312
Statins			
Baseline	24 (52.2%)	44 (61.1%)	0.582
End	38 (82.6%)	66 (91.7%)	0.656
Antihypertensive medications			
Baseline	39 (84.8%)	56 (77.8%)	0.711
End	42 (91.3%)	68 (94.4%)	0.819
AAA diameter, cm	6.02±0.78	5.62±0.68	0.456
Aortoiliac length, cm	14.9±1.7	15.1±1.9	0.812
Endograft proximal diameter, cm	2.65±0.24	2.69±0.33	0.944
Endograft length, cm	13.75±1.63	13.67±1.75	0.912
Type of endograft	Excluder	Anaconda (38)	
-		Zenith (28)	
		Endurant (5)	
		Talent (1)	

Prospective study

N=118 pts

Kadoglou NP, Moulakakis KG, Liapis CD. Differential effects of stentgraft fabrics on arterial stiffness in patients undergoing endovascular aneurysm repair. J Endovasc Ther. 2014

Differential effects of stent-graft fabrics on arterial stiffness in patients undergoing EVAR

N=118 pts

Values of PWV and novel biomarkers at **baseline** and **after 12 months**

Pulse Wave V	elocity and Nov		Patients Underg the Type of Ende	going Endovascula ograft	ar Aneurys	m Repair
	PTFE (n=46) Polyester (n=72)		ter (n=72)			
	Baseline	End	Baseline	End	p1 [†]	p2 [†]
PWV, m/s OPG, pmol/L	12.05±2.55 15.18±3.78	14.87±2.43* 10.51±4.46*	12.63±2.75 15.72±5.02	16.75±2.88* 12.45±4.94*	0.685 0.803	0.033 0.048
IL-8, pg/mL IL-6, pg/mL	11.27±5.09 3.81±1.51	17.97±8.1* 3.69±1.37	10.27±5.02 3.89±4.56	25.68±11.11* 3.58±1.50	0.681 0.944	0.001
IL-10, pg/mL	5.35 ± 1.57	8.39±2.22*	4.36±2.08	7.64±1.52	0.271	0.518

PWV, OPG and IL-8 increase was more pronounced in Polyester Woven group compared to PTFE group (p=0.033, p=0.048, p<0.001 respectively)

Kadoglou NP, Moulakakis KG, Liapis CD. Differential effects of stent-graft fabrics on arterial stiffness in patients undergoing endovascular aneurysm repair. J Endovasc Ther. 2014

Conclusions (I)

- TEVAR and EVAR are associated with lower perioperative mortality and morbidity rates compared to open surgical repair BUT this advantage is blunted at long term, mainly due to an increase in cardiovascular complications.
- Arterial stiffening together with adverse cardiac function after stent graft implantation may explain this change in the long-term outcome

Conclusions (II)

- There is evidence of increased arterial stiffness after EVAR related to graft type (polyester more than PTFE). The effect of endograft type in the thoracic aorta is under investigation.
- Arterial stiffness should be taken into consideration by the industry when designing new endografts

Thank you for your attention