CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 25-27 2018

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE

Why duplex or angiography MUST be performed after CEA?

H.-H. Eckstein, Department for Vascular and Endovascular Surgery, Technical University Munich, Germany

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

Disclosure

Speaker name:

HH Eckstein.....

I have the following potential conflicts of interest to report:

Consulting

- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- inancial support by MEDISTIM
- I do not have any potential conflict of interest

CONTROVERSIES & UPDATES

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Causes of Perioperative Stroke after Carotid Endarterectomy: Special Considerations in Symptomatic Patients

Glenn R. Jacobowitz, MD, Caron B. Rockman, MD, Patrick J. Lamparello, MD, Mark A. Adelman, MD, Andres Schanzer, BS, David Woo, BS, Ronnie Landis, RN, Paul J. Gagne, MD, Thomas S. Riles, MD, and Anthony M. Imparato, MD, New York, New York

and embolism 54%

intracranial bleed 15%

....technical errors are still the most common cause of perioperative stroke.....

Rationale of intraoperative carotid imaging

- ✓ Perfect morphological result = small risk of any thrombosis/embolism
- ✓ Early detection of residual plaque/clot + immediate correction = periop strokes_
- ✓ Tools: intraoperative angiography and Duplex Ultrasound (DUS)

Management of Atherosclerotic Carotid and Vertebral Artery Disease: 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)

Writing Group ^a, A.R. Naylor, J.-B. Ricco, G.J. de Borst, S. Debus, J. de Haro, A. Halliday, G. Hamilton, J. Kakisis, S. Kakkos, S. Lepidi, H.S. Markus, D.J. McCabe, J. Roy, H. Sillesen, J.C. van den Berg, F. Vermassen,

Quality control techniques aim to.... to prevent technical error..., to identify residual luminal thrombus..., to diagnose intimal flaps, residual stenoses etc

Recommendation 59	Class	Level
Targeted monitoring and quality control strategies may be	llb	С
considered to reduce the risk of perioperative stroke		

Transatlantic debate 2013 about completion angiography

European Journal of Vascular and Endovascular Surgery

Volume 45, Issue 5, May 2013, Pages 416–419

Part One: For the Motion. Completion Angiography Should be Used Routinely Following Carotid Endarterectomy

J.-B. Ricco^{a,} 📥 · 🔤, F. Schneider^a, G. Illuminati^b

There is no guarantee, that re-exploration will correct the problem.... Reexploration may often result in the very complications that the surgeon is trying to avoid...

J CARDIOVASC SURG 2014;55:1-2

Patient characteristics and outcomes of carotid endarterectomy and carotid artery stenting: Analysis of the German mandatory national quality assurance registry - 2003 to 2014

M. A. KALLMAYER 1, P. TSANTILAS 1, C. KNAPPICH 1, B. HALLER 2, M. STORCK 3, 4, T. STADLBAUER 1, A. KÜHNL 1, A. ZIMMERMANN 1, H.-H. ECKSTEIN 1

✓ The number of intraoperative control exams increased over time

✓ The in-hospital stroke/death rates decreased over time

VOLUME SE INUMBER & DECEMBER 201

THE JOURNAL OF

SURGERY

Patients (2009-2014) and Methods Knappich et al., STROKE 2017; 48: 955-963

- Secondary data analysis based on German nationwide quality assurance databank
- Elective CEA for (a)symptomatic car sten
- Intraop imaging in 67% of cases
- Any in-hospital stroke or death 1.8%
- Uni- and multivariable regression analyses

Intraoperative Completion Studies, Local Anesthesia, and Antiplatelet Medication Are Associated With Lower Risk in Carotid Endarterectomy

Christoph Knappich, MD; Andreas Kuehnl, MD, Stroke Sofie Schmid, MD; Thorben Breitkreuz; M Alexander Zimmermann, MD, MHBA; Hans-Henning Eckstern

Independent perioperative variables and associated risks

Knappich et al., STROKE 2017; 48: 955-963

Risk of any stroke or death (n=138 476)				Adj. RR [95% Cl] P-value	
Type of anesthesia					
General				Reference	
Local	⊢	- - - - - - - - -		0.85 [0.75 - 0.95] 0.006	
Combined/switched		⊢ – – –	i	1.57 [1.22 - 2.01] <0.001	
Operation technique					
CEA with patch				Reference	
CEA w/o patch		B		1.41 [1.03 - 1.91] 0.029	
Eversion-CEA	+−- \\ '−			0.93 [0.84 - 1.04] 0.212	
Other technique		⊨ −−−1		1.22 [1.03 - 1.45] 0.021	
Intraoperative completion study (yes	vs. no)				
Angiography	⊢_ ■			0.80 [0.71 - 0.90] <0.001	
Ultrasound				0.74 [0.63 - 0.88] 0.001	
Flowmetry	⊢	4		0.87 [0.74 - 1.04] 0.121	
Other technique	—			0.97 [0.80 - 1.17] 0.756	
Other procedural factors (yes vs. no)					
Antiplatelet peri-OP	⊢			0.83 [0.71 - 0.97] 0.017	
Neurophysiologic monitoring				1.10 [0.99 - 1.22] 0.068	
Shunting		- - - - - - - - - - -	⊢ −− −	1.88 [1.66 - 2.14] <0.001	
Cross-clamp time		H		1.11 [1.08 - 1.15] <0.001	
0.50	1.	00	2.00	3.00	

RR for any in-hospital stroke or death (95% CI)

How to perform intraoperative angiography

Our equipment: VeriQ c (MEDISTIM)

2

1.00 -20

acc

DP

MEDISTIM

intimal flap (E-CEA) - thrombi in the prox ICA (C-CEA)

Interim results from the CIDAC trial Comparison of Intraop DUS and Angio after CEA (CIDAC)

Grade	Definition	Implication	Morphologic Criteria		Hemodynamic Criteria		
			Angiography	Sonography	Angiography	Sonography	
1	no defect	no operative revision	 smooth vessel wall no narrowing no angulation no false lumen no contrast filling defect no vasospasm 	 smooth vessel wall no narrowing no angulation no false lumen 	 fast continuous contrast runoff 	 no aliasing phenomenon PSV < 100 cm/sec 	
2	minor defect	consider operative revision	 irregularity of vessel wall no significant narrowing distal intimal step or intimal flap without significant narrowing and non-mobile vasospasm of ICA 	 irregularity of vessel wall narrowing < 30% intimal flap in ICA < 2 mm intimal flap in CCA < 3 mm 	 dynamic but pulsatile runoff 	 aliasing phenomenon without morphologic defect PSV < 150 cm/sec 	
3	major defect	operative revision recommended	 significant narrowing of CCA or ICA intimal flap with significant narrowing or mobile dissection occlusion of ECA 	 narrowing > 30% intimal flap in ICA > 2mm intimal flap in CCA > 3 mm dissection occlusion of ECA 	 delayed and pulsatile runoff 	 aliasing phenomenon with morphologic defect PSV > 150 cm/sec 	
4	severe lesion	operative revision mandatory	 high grade stenosis intraluminal contrast filling defect occlusion 	high grade stenosisvalve mechanismocclusion	 slow and pulsatile runoff no runoff 	PSV > 300 cm/secno flow	

Interim results from the CIDAC trial Comparison of Intraop DUS and Angio after CEA (CIDAC)

- Morphological assessment (angio, DUS) in 100 consecutive CEA, stroke/death rate 1%
- Incidence of technical defects (angio, DUS) was 11% (8% were confirmed)
- Assessment by senior consultants and trainees
 - defects are rated significantly higher with IDUS compared to angiography (P = 0.001)
 - IDUS more frequently leads to intraoperative revision compared to angiography
 - Interrater reliability of DUS is higher than with angiography
- Interobserver reliability
- Final results and publication asap

Routine intraop imaging is a MUST

- ✓ Reduction of stroke/death rates (GER) by correcting technical errors
- ✓ valid documentation of the technical result (trainees, patients, referring physicians)
- ✓ By the way: in endovascular therapy a final look at the end result is essential

✓ *"Trust, but verify - doveryai, no proveryai"* President Ronald Reagan in the context of nuclear disarmament

Thank you very much

H.-H. Eckstein Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany

06-08 December, 2018

8thMUNICH VA SCULAR ONFERENCE

THE DATE

... where doctors meet science

where doctors meet science

CONFERENCE 2010