MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE

Intraoperative risk management during asymptomatic carotid repair

C. Pratesi

Department of Vascular Surgery University of Florence

Disclosure

Speaker name:

Carlo Pratesi

- □ I have the following potential conflicts of interest to report:
- Consulting
- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- Other(s)
- I do not have any potential conflict of interest

Carotid Stenosis Treatment: Variation in International Practice Patterns

M. Venermo^{a,*,o}, G. Wang^{b,o}, A. Sedrakyan^c, J. Mao^c, N. Eldrup^d, R. DeMartino^e, K. Mani^f, M. Altreuther^g, B. Beiles^h, G. Menyheiⁱ, G. Danielsson^j, I. Thomson^k, G. Heller^I, C. Setacci^m, M. Björck^{f,p}, J. Cronenwett^{n,p}

Eur J Vasc Endovasc Surg (2017)

JANUARY 25-27 2018 C MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Selection of patients for carotid revascularization

	Perioperative a stroke/ Asympto	nticipated rate of mortality omatic (%)
American Heart Association.	1998	3
AMERICAN ACADEMY OF NEUROLOGY	2005	3
esvs	2009	3
Society for Vascular Surgery	2011	3

REVIEW

Stroke/Death Rates Following Carotid Artery Stenting and Carotid Endarterectomy in Contemporary Administrative Dataset Registries: A Systematic Review

K.I. Paraskevas ^{a,*}, E.L. Kalmykov ^b, A.R. Naylor ^b

Figure 2. Stroke/death rates for "average risk" asymptomatic patients undergoing CAS and CEA in various registries. "Results reported separately for patients aged <65 and ≥ 65 years. "Results reported separately for males and females."

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Management of Atherosclerotic Carotid and Vertebral Artery Disease: 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)

Recommendation 17	Class	Level
In "average surgical risk" patients with an asymptomatic	lla	В
60-99% stenosis, carotid endarterectomy should be		
considered in the presence of one or more imaging		
characteristics that may be associated with an increased risk		
of late ipsilateral stroke, ^a provided documented		
perioperative stroke/death rates are <3% and the patient's		
life expectancy exceeds 5 years		

^a Imaging/clinical criteria that might confer an increased risk of stroke on BMT include:

- Silent infarction on CT
- Stenosis progression
- Large plaque area
- Large JBA
- Plaque echolucency
- Intra-plaque haemorrhage on MRI
- Impaired CVR
- Spontaneous embolisation on TCD
- History of contralateral TIA

JANUARY 25-27 2018 C MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Risk assessment for treatment options

- ✓ Surgical team
- Selection of patients:
 - Lesion characteristics
 - Patient's comorbidities
- Surgical technique

Risk score assessment for treatment options

According to the most recent models, the expected benefit from endarterectomy is marked in patients with a low score (i.e. <4, corresponding to a periprocedural risk of <3%); marginal in patients with an intermediate score (i.e. 4-7, corresponding to a periprocedural risk of 3-6%); and negligible in patients with a high score (i.e. >7, corresponding to a periprocedural risk of >6%), in which case the best medical therapy alone should be administered.

International Journal of Stroke 2017

Risk index for predicting perioperative stroke, myocardial infarction, or death risk in asymptomatic patients undergoing carotid endarterectomy

Risk factor	Adjusted OR	95% CI	Regression coefficients	Points assigned	Total point for the path	Estimated risk is percentage for ient the patient	Risk tier categorization	N (%)
Are vege					-1	1.18	Low	
rge, years	Defenses	Deferences	Deference	0	0	1.44		
	Reference	Reference	Reference	0	1	1.75		15,249 (86.2%)
60-69 (vs < 60)	0.75	0.50-1.12	-0.29	-1	2	2.13		
70-79 (vs < 60)	0.84	0.57-1.24	-0.17	-1	3	2.6		
$\geq 80 \text{ (vs } < 60 \text{)}$	1.52	1.03-2.26	0.42	2				
Dyspnea at moderate exertion or rest					4	3.15	Intermediate	
No	Reference	Reference	Reference	0	5	3.82		2233 (12.6%)
Ves	1 4 3	1 10-1 86	0.36	2	6	4.63		
Previous peripheral revascularization or amputation	1.10	1.10 1.00	0.00	-	7	5.6		
No.	Defenence	Deference.	Deferences	0				
NO X	Reference	Reference	Reference	0	8	6.75	High	
Yes	1.80	1.33-2.45	0.59	3	9	8.13		
COPD					10	9.75		
No	Reference	Reference	Reference	0	11	11.66		
Yes	1.73	1.27-2.36	0.55	3	12	13.88		
Recent angina within 1 month					13	16.45		210(1.2%)
No	Reference	Reference	Reference	0	14	19.38		
Vac	2.05	1 21 2 47	0.72	4	15	22.7		
	2.05	1.21-5.47	0.72	7	16	26.4		
Dependent functional status					17	30.47		
No	Reference	Reference	Reference	0	18	34.86		
Yes	2.77	1.68-4.58	1.02	5	19	39.53		

The 30-day stroke and death incidence after CEA in asymptomatic patients is 1.3% in the United States. A risk index was developed classifying patients into low (<3%), intermediate (3-6%), and high (>6%) risk of 30-day stroke, MI or death.

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

SCORE	n (%)
-1	365
0	28
1	21
2	204
3	13
4	74
5	45
6	2
7	51
8	7
9	9
10	4
11	3
12	5
13	0
14	0
15	0
16	0
17	0
18	0
19	0
тот	831

Asymptomatic carotid Risk stratification- Study group (May 2013-September 2017)

SCORE	n (%)	@ 30 gg	%
LOW	631 (75,9)	1 stroke minor, 1 death (other cause)	0,3
INTERMEDIATE	172 (20,7)	1 stroke minor, 1 death (other cause)	1,1
HIGH	28 (3,4)	1 stroke major, 1 death (other cause)	7,1
totale	831	6	0,7

Vascular Surgery- Florence

Risk assessment for treatment options

✓ Surgical team

- Selection of patients
- Surgical technique
 - Embolic complications
 - Ischaemic complications

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

There is More to Preventing Stroke After Carotid Surgery than Shunt and Patch Debates

A.R. Naylor*

- ✓ Best medical therapy
- ✓ Surgical technique
- ✓Intraoperative imaging
- ✓Anaesthesia

CONTROVERSIES & UPDATES

Process of care for carotid endarterectomy: Perioperative medical management

Michael C. Stoner, MD, and Dorian J. deFreitas, MD, Greenville, NC

 Table I. Summary of pharmacotherapy strategies for patients undergoing carotid endarterectomy

Strategy	Key points
β-blockade	 Reduces myocardial injury rates following surgery in appropriately selected patients Low-risk patients likely do not derive a benefit if not already on a β-blocker May be associated with adverse events at
ACE inhibitor/ ARB	 higher doses or if used indiscriminately Associated with improved long-term survival in patients with peripheral vascular disease
	 Stabilizes carotid plaque and improve vessel wall biology Appropriate long-term agent for patients with our constraindication
Statin	 Reduces acute and long-term stroke risk, reduces cardiovascular event rate, associated with long-term survival
	 Multiple mechanisms of action including lipid profile and plaque stabilization Reasonable agent for all patient undergoing vascular surgery
Antiplatelet	 Reduces acute and long-term stroke risk, reduction in cardiovascular event rate Low-dose aspirin efficacious No clear benefit to dual therapy or high- dose therapy in patients undergoing CEA

With the adoption of evidence-based medical therapy, there exists an avenue to optimize the care of patients with carotid disease, to both improve the stroke risk reduction benefit of CEA and the short- and longterm cardiovascular event rate of this at-risk patient population

Preoperative Antiplatelet and Statin Use Does Not Affect Outcomes after Carotid Endarterectomy

Brianna M. Krafcik,¹ Alik Farber,¹ Robert T. Eberhardt,² Jeffrey A. Kalish,¹ Denis Rybin,³ Gheorghe Doros,³ Steven L. Pike,¹ and Jeffrey J. Siracuse,¹ Boston, Massachusetts

Outcomes	Odds Ratio (95% CI)	P value
Postoperative death		
Statin and antiplatelet	0.423 (0.09-1.92)	0.264
Statin only	1.27(0.25-6.4)	0.78
Antiplatelet only	1.9(0.46-7.8)	0.37
Cardiac complications		
Statin and antiplatelet	0.87(0.4 - 1.9)	0.73
Statin only	0.94 (0.34-2.56)	0.9
Antiplatelet only	0.74(0.27 - 2.02)	0.56
Postoperative stroke	. ,	
Statin and antiplatelet	1.14 (0.54-2.42)	0.73
Statin only	0.92(0.34-2.5)	0.88
Antiplatelet only	1.7(0.76 - 4.04)	0.19
MACE	,	
Statin and antiplatelet	0.94(0.55 - 1.61)	0.82
Statin only	1.03 (0.52-2.04)	0.93
Antiplatelet only	1.15 (0.61-2.17)	0.66
Outcomes	Odds Ratio (95% CI)	P value
Asymptomatic MACE		
Statin and antiplatelet	1.01(0.47 - 2.19)	0.98
Statin only	1.17 (0.48 - 2.86)	0.72
Antiplatelet only	0.81 (0.35 - 1.9)	0.63
Symptomatic		
MACE		
Statin and antiplatelet	0.92(0.5-1.7)	0.79
Statin only	1.13 (0.53-2.43)	0.75
Antiplatelet only	1.04(0.53-2.3)	0.91

Preoperative statin and antiplatelet use did not affect perioperative outcomes suggesting that its short-term use is not essential. In patients who are not on statins or antiplatelet medications, CEA safely can be performed before consideration is given to their initiation.

Ann Vasc Surg 2018

J Vasc Surg 2011

Surgical technique: embolic complications

Reducing the Risk of Intraoperative Neurological Complications during Carotid Endarterectomy with Early Distal Control of the Internal Carotid Artery

Table 1. Intraoperative features

	Group 1	Group 2	p
Patch closure	547 (50.1%)	898 (78.5%)	0.002
Shunt insertion	104 (9.5%)	106 (9.2%)	n.s.
- SEPs reduction	71 (6.5%)	67 (5.8%)	
 SEPs not evaluable 	33 (3%)	39 (3.4%)	
Clamping mean duration	28.3 min	33.5 min	< 0.001
Deficits at awake	20 (1.8%)	5 (0.4%)	0.002

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Early distal clamp

Adverse ischemic cerebral events occurred in 2.4% (TIA) and 2.9% (minor stroke) of patients and were related to significantly more microemboli during dissection (0.92 vs 6.91, P=0.003) but not during clamp release or wound closure

Verhoeven et al., Stroke, 2005

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Surgical technique

The French experience

Evolution of practices in carotid surgery: observational study in France from 2006 to 2015

Lucie Salomon du Mont, Stefan Olteanu, Eric Steinmetz, Benjamin Kretz

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Intraoperative imaging

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Prevention of intraoperative neurological events

Embolic complications

Surgical technique

Ischaemic complications

- <u>Cerebral monitoring (SSEPs, NIRS,</u> <u>awake testing)</u>
- ✓ Accurate pressure control

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER WWW.CACVS.ORG PARIS, FRANCE

Intraoperative monitoring of carotid endarterectomy

Apinis et al., Anesth Clin, 2014

Table 1

Overview of the various types of monitors used during carotid endarterectomy to detect cerebral ischemia, thromboembolism, or both

Neurologic Monitor	Description	Advantages	Disadvantages
Awake testing	Using simple tasks for a patient to perform to assess the signs for cerebral ischemia	Direct monitor of neurologic function	Eliminated with CoPaGea
TCD	A Doppler probe is placed on the petrous temporal bone, allowing measurement of MCA flow.	Monitors both flow and emboli, used inter- and postoperative period	 Operator dependent Placement is near the surgical site. Acoustic window is not found in 10%–20% of patients.
SP	The SP distal to the carotid clamp reflects the perfusion pressure around the circle of Willis.	Specific measure of cerebral ischemia	 Nonsensitive measure of cerebral ischemia Cannot identify emboli
EEG	EEG is affected by cerebral ischemia. Raw and processed (spectral array) data can be used.		 Measurement only reflects cortical and not deeper structure. Difficult to interpret GA can alter the signal. Cannot identify emboli
SSEPs	EEG is recorded after a stimulus, thus reflects the cortex and deeper structure activity.	May be useful if baseline EEG is abnormal	 GA can alter the signal. Thought no more sensitive or specific compared with EEG Cannot identify emboli
NIRS	NIRS measures arterial venous and capillary oxygenation, producing an rSo ₂ value.	High NPV for cerebral ischemia	 Poor PPV Frontal lobe sensors Interference from noncerebral blood flow and light Cannot identify emboli

CONTROVERSIES & UPDATES

Local vs general anaesthesia

surgery (GALA): a multicentre, randomised controlled trial

→ @ General anaesthesia versus local anaesthesia for carotid

Anaesthesia

GALA Trial Collaborative Group*

No statistical difference was reported between local and general anaesthesia. Different anaesthesiological strategies should be tailored on each case based on team and patient's preference

Lancet 2008; 372: 2132-42

Anesthesia for Carotid Endarterectomy: The Third Option. Patient Cooperation During General Anesthesia

Neurological complications within 30 d:	
Any stroke, n (%)	0
Neuropsychological injury, n (%)	0
Death, n (%)	0
Cardiac complications within 30 days:	
Myocardial infarction, n (%)	2(1.1)
Arrhythmias, n (%)	2 (1.1) ^a
Death, n (%)	0
Questionnaire on awareness:	
Auditory recalls, n (%)	172 (95.02)
Visual recalls, n (%)	3 (1.66)
Tactile recalls, n (%)	173 (95.58)
Recall of muscular paralysis, n (%)	0
Recall of vocal cord paralysis, n (%)	139 (76.79)
Any recall of pain, n (%)	1 (0.55)
Any recall of bad feelings, n (%)	2 (1.1)
Perception of real length of surgery, n (%)	35 (19.34)
Experienced as a dream, n (%)	106 (58.56)
Patients' satisfaction score, n (%):	
Very satisfied	112 (61.87)
Satisfied	67 (37.01)
Unsatisfied	2 (1.1)
Very unsatisfied	0
Surgeons' satisfaction score, n (%):	
Very satisfied	170 (93.92)
Satisfied	11 (6.08)
Unsatisfied	0
Very unsatisfied	0

Bevilacqua S. et al., Anesth Analg 2009

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Dept. Of Vascular Surgery- University of Florence

9026 CEA (1980-2017)

Prospective study group (1996-2016)

6636 consecutive interventions, 4739 asymptomatics

In the attempt of evaluating the changes in terms of surgical and anesthetic strategy and results in last 20 years, we compared two groups including all the patients operated on between 1996 and 1999 (1321 interventions, Group 1) and between 2013 and 2017 (980 interventions, Group 2)

GA+SSEPs

CoPaGeA (awake monitoring)

Prospective study group (1996-2016)

SURGICAL AND ANESTHETIC FEATURES

	Group 1	Group 2	р
	(1321 int.)	(980 int.)	
General anaesthesia	1318 (99.5%)	156 (16%)	<0.001
CoPaGeA (Cooperative Patient General Anesthesia)	-	822 (84%)	<0.001
Selective shunts	85 (6.4%)	144 (14.5%)	<0.001
Arterial reconstruction			
- Primary closure	521 (39.5%)	22 (2%)	<0.001
- Patch	728 (55%)	929 (95%)	<0.001
- Eversion	67 (5%)	26 (2.7%)	0.07
- Bypass graft	5 (0.5%)	3 (0.3%)	n.s.

Prospective study group (1996-2016)

RESULTS

		Group 1 (1321 int.)	Group 2 (980 int.)	р
	Intraoperative neurological events	21 (1.6%)	4* (0.4%)	<0.001
30-c	lay results	Group 1	Group 2	р
Min	or stroke	10 (0.8%)	2 (0.2%)	0.05
Mai	or stroke	3 (0.2%)	1 (0.1%)	n.s.
Dea	ths	6 (0.4%)	4 (0.4%)	n.s.
Stro	ke and deaths @ days	19 (1.4%)	7 (0.7%)	0.05

*incomplete recovery after shunting with remission within 3 hours

Prospective study group (1996-2016)

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

How to improve intraoperative results

Intraoperative Completion Studies, Local Anesthesia, and Antiplatelet Medication Are Associated With Lower Risk in Carotid Endarterectomy

2009-2014, Germany 142.074 elective carotid endarterectomy procedures for asymptomatic or symptomatic carotid artery stenosis

N=142074	N	n/N (%)
Type of anesthesia		
Local anesthesia	37 355	26.3
General anesthesia	101 522	71.5
Combined (local/general) anesthesia*	3197	2.3
Intraprocedural neurophysiological monitoring†	85 081	59.9
Electroencephalography	8230	9.7
Transcranial cerebral oximetry	15286	18.0
Somatosensory evoked potentials	41144	48.4
Other methods‡	32468	38.2
Operation technique		
CEA without patch	1765	1.2
CEA with patch plasty	71920	50.6
Eversion CEA	60 2 97	42.4
Other technique§	8092	5.7
Intra-arterial shunt use	61 074	43.0
Intraoperative completion study	95044	66.9
Perioperative antiplatelet medicationI	106 653	90.4
ASS monotherapy	97720	68.8
Other monotherapy	3236	2.3
Dual antiplatelet medication Heart Stroke	5697	4.0
None Association Association	°24101	17.0
None Association Association	°°24101	17.

	N	n	n/N (%)	RR	95% CI		
Overall	142 074	2611	1.8				
Type of anesthesia							
General anesthesia	101 522	1949	1.9	Ref			
Local anesthesia	37 355	578	1.5	0.81	0.74-0.88		
Both (local/general) anesthesia*	3197	84	2.6	1.37	1.10-1.70		
Operation technique							
CEA with patch	71920	1487	2.1	Ref			
CEA without patch	1765	52	3.0	1.42	1.09-1.87		
Eversion CEA	60 297	878	1.5	0.71	0.65-0.77		
Other technique	8092	194	2.4	1.16	1.00-1.34		
Intraoperative completion study							
No	47 030	957	2.0	Ref			
Yes	95044	1654	1.7	0.86	0.80-0.93		
Perioperative antiplatelet medication†							
No	11 320	227	2.0	Ref			
Yes	106653	1883	1.8	0.88	0.77-1.01		
Any intraprocedural neurophysiologic monitoring							
No	56 993	1142	2.0	Ref			
Yes	84 296	1469	1.7	0.87	0.81-0.94		
Intraoperative shunt use							
No	81 000	1131	1.4	Ref			
Yes	61074	1480	2.4	1.74	1.61-1.87		

LA, patch plasty, intraoperative completion studies (DU-DSA), and perioperative antiplatelet medication were independently associated with lower in-hospital stroke or death rates after carotid endarterectomy

Knappich C. et al., Stroke 2017

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Take home message

CEA: prevention of stroke minimizing periprocedural risk < 1%

Intraoperative risk management during asymptomatic carotid repair

Thank you for your attention

