Large common iliac arteries: bell Bottom, Sandwich, or hypogastric occlusion?

Armando C Lobato, MD, PhD

Nothing to Disclose

AIM

The current study aims at comparing the results of

Sandwich, Hypogastric Artery Interruption and Bell-

Bottom* techniques to address bilateral common iliac

artery aneurysms during EVAR

* CIAA > 16mm in diameter

METHODS

- ✓ From Jan 2000 to Dec 2016, 122 patients with asymptomatic AAA (mean Ø: 56 mm) associated with BCIAA (mean Ø: 32 mm) underwent elective EVAR at our Institution
- ✓ A total of 244 CIAA were treated using either the same technique bilaterally or a different technique in each side

METHODS

	N° Patients	Period
Bilateral BBT	09	2000-2016
Bilateral CE	47	2000-2008
Bilateral ST	06	2008-2016
Unilateral ST + Contralateral CE	27	2008-2016
Unilateral ST + Contralateral BBT	13	2008-2016
Unilateral CE + Contralateral BBT	20	2000-2016

ST: Sandwich Technique; BBT: Bell-Bottom Technique; CE: Coil Embolization;

METHODS

	HAER by ST	HAI by CE	HAP by BBT
GROUP I	52		
GROUP II		141	
GROUP III			51

ST: Sandwich Technique; BBT: Bell-Bottom Technique; CE: Coil Embolization; HAP: Hypogastric Artery Preservation

HAER: Hypogastric Artery EndoRevascularization; HAI: Hypogastric Artery Interruption

	GROUP I	GROUP II	GROUP III	p
Median Follow-up (months)	21	95	70	<.0001
Technical Success Rate (%)	100	100	100	NS
Early Related Mortality Rate (%)	0	0.7	0	NS
Late Related Mortality Rate (%)	0	1.4	2	NS
Postoperative Aneurysm Rupture Rate (%)	0	0.7	2	NS
Reintervention Rate (%)	7.7	11	15.9	NS

Early Related Mortality Bilateral HA Interruption by Coil Embolization

Normal flexible rectossigmoidoscopy

Fever and lower abdominal pain. CT scan – 24th post-operative day. HA thrombosis followed by rupture

	GROUP I	GROUP II	GROUP III	p
Median Follow-up (months)	21	95	70	<.0001
Technical Success Rate (%)	100	100	100	NS
Early Related Mortality Rate (%)	0	0.7	0	NS
Late Related Mortality Rate (%)	0	1.4	2	NS
Postoperative Aneurysm Rupture Rate (%)	0	0.7	2	NS
Reintervention Rate (%)	7.7	11	15.9	NS

Late Related Mortality & Postoperative Aneurysm Rupture

Bilateral HA Preservation by Bell-Bottom Technique (>22mm Ø)

	GROUP I	GROUP II	GROUP III	p
Median Follow-up (months)	21	95	70	<.0001
Technical Success Rate (%)	100	100	100	NS
Early Related Mortality Rate (%)	0	0.7	0	NS
Late Related Mortality Rate (%)	0	1.4	2	NS
Postoperative Aneurysm Rupture Rate (%)	0	0.7	2	NS
Reintervention Rate (%)	7.7	11	15.9	NS

Reintervention

Unilateral HA Interruption by Coil Embolization + Contralateral HA Preservation by Bell-Bottom Technique (>22mm Ø)

Reintervention

Unilateral HA Interruption by Coil Embolization + Contralateral HA Preservation by Bell-Bottom Technique (>22mm Ø)

After 12 months

After 12 months L iliac Limb Occlusion Type 1B Endoleak and

New BB & Fem-Fem bypass

Reintervention

Unilateral HA Interruption by Coil Embolization + Contralateral HA Preservation by Bell-Bottom Technique (>22mm Ø)

CT After 24 months Stentgraft angulation & BB proximal migration, again

	GROUP I	GROUP II	GROUP III	p
Late Type III Endoleak Rate (%)	1.9	4.3	2	NS
Iliac Limb Occlusion Rate (%)	5.7	7.1	3.9	NS
Permanent Buttock Claudication Rate (%)	1.9	13.5	2	P<.0006
Late Type II Endoleak Rate (%)	1.9	17	2	P<.0004
Iliac Limb Migration Rate (%)	1,9	0	9.8	P<.0001
Late Type IB Endoleak Rate (%)	0	0	7.8	P<.0001

Late Type III Endoleak

Bilateral HA Interruption by Coil Embolization

	GROUP I	GROUP II	GROUP III	p
Late Type III Endoleak Rate (%)	1.9	4.3	2	NS
Iliac Limb Occlusion Rate (%)	5.7	7.1	3.9	NS
Permanent Buttock Claudication Rate (%)	1.9	13.5	2	P<.0006
Late Type II Endoleak Rate (%)	1.9	17	2	P<.0004
Iliac Limb Migration Rate (%)	1,9	0	9.8	P<.0001
Late Type IB Endoleak Rate (%)	0	0	7.8	P<.0001

Iliac Limb Occlusion

Bilateral HA Interruption by Coil Embolization

	GROUP I	GROUP II	GROUP III	p
Late Type III Endoleak Rate (%)	1.9	4.3	2	NS
Iliac Limb Occlusion Rate (%)	5.7	7.1	3.9	NS
Permanent Buttock Claudication Rate (%)	1.9	13.5	2	P<.0006
Late Type II Endoleak Rate (%)	1.9	17	2	P< .0004
Iliac Limb Migration Rate (%)	1,9	0	9.8	P<.0001
Late Type IB Endoleak Rate (%)	0	0	7.8	P<.0001

Late Type II Endoleak Bilateral HA Interruption by Coil Embolization

	GROUP I	GROUP II	GROUP III	p
Late Type III Endoleak Rate (%)	1.9	4.3	2	NS
Iliac Limb Occlusion Rate (%)	5.7	7.1	3.9	NS
Permanent Buttock Claudication Rate (%)	1.9	13.5	2	P< .0006
Late Type II Endoleak Rate (%)	1.9	17	2	P< .0004
Iliac Limb Migration Rate (%)	1,9	0	9.8	P<.0001
Late Type IB Endoleak Rate (%)	0	0	7.8	P<.0001

Iliac Limb Migration

Unilateral HA Interruption by Coil Embolization + Contralateral HA Preservation by Bell-Bottom Technique (>22mm Ø)

	GROUP I	GROUP II	GROUP III	p
Late Type III Endoleak Rate (%)	1.9	4.3	2	NS
Iliac Limb Occlusion Rate (%)	5.7	7.1	3.9	NS
Permanent Buttock Claudication Rate (%)	1.9	13.5	2	P<.0006
Late Type II Endoleak Rate (%)	1.9	17	2	P<.0004
Iliac Limb Migration Rate (%)	1,9	0	9.8	P<.0001
Late Type IB Endoleak Rate (%)	0	0	7.8	P<.0001

Late Type IB Endoleak

Bilateral HA Preservation by Bell-Bottom Technique(>22mm Ø)

According to Multivariate Statistical Analysis (Cox regression model)

- ✓ Bilateral HAI was associated with PBC (p=.03) and late type II endoleak (p=0.04).
- ✓ BBT (ILE> 22mm in Ø) was associated with ILM (p=.01) and late type IB endoleak (p=0.01)

HAE: Hypogastric Artery Interruption; PBC: Permanent buttock claudication; BBT: Bell-Bottom Technique; ILE: iliac limb endograft; ILM; Iliac limb migration;

DISCUSSION

- ✓ The results of the present study are comparable to other reports, not necessarily performed in such unfavorable scenarios
- ✓ To our understanding, this is a consequence of ST hallmarks:
- Use of commercially readily available stent-grafts familiar to the majority of endovascular surgeons
- AIA or IIAA with CIA < 40mm in length
- CIA aneurysm (CIAA) lumen ≥ 8mm in diameter
- AIA or IIAA with very tortuous CIA anatomy
- Distal landing zone < 10mm in length in the main HA trunk
- Contralateral external iliac artery occlusion
- Long and large HAA
- Previous AAA open repair with Dacron graft (8 mm in diameter) complicated with CIA anastomotic
 false aneurysm

CONCLUSIONS

- HAI and BBT are associated with greater complication rates in comparison to the ST for the treatment of AAA associated with BCIAA
- It is NOT ideal to choose bilateral HAI in patients with bilateral AIA
- It is NOT ideal to choose BBT with CIAA ≥ 20mm in diameter
- It is NOT *ideal* to *choose* ST in AIA with poor runoff (HA), HA with severe ostia stenosis and HA < 4mm in diameter

