

JANUARY 25-27 2018

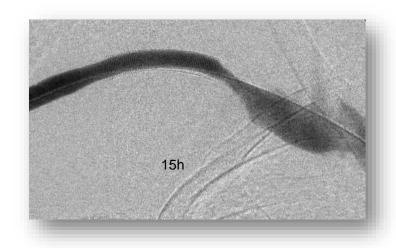
MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE

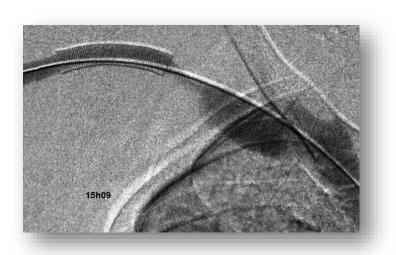
Embolized hardware: take it or leave it?

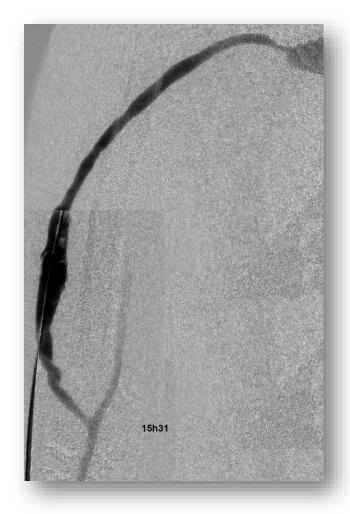
Richard Shoenfeld MD, FSIR, FAHA
The Access Center at West Orange
West Orange, New Jersey USA

Dis	sclosure
Spo	eaker name: Richard Shoenfeld, MD
	I have the following potential conflicts of interest to report:
	Consulting
	Employment in industry
	Shareholder in a healthcare company
	Owner of a healthcare company
	Other(s)
X	I do not have any potential conflict of interest

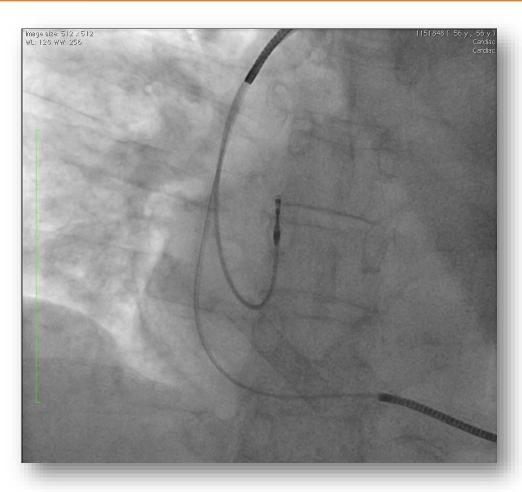
The 12 Commandments and 4 Rules


(with interpretive statements)

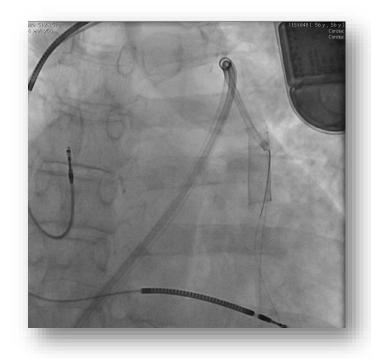

- # 12 "Shit happens"
- # 3 You shall not take the name of the LORD your God in vain
- # 6 You shall not murder (see commandment # 11)
- # 11 The patient shall not die on your table

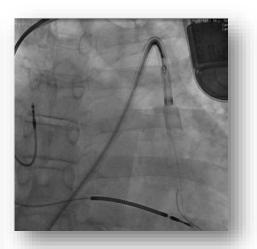

Rule #1

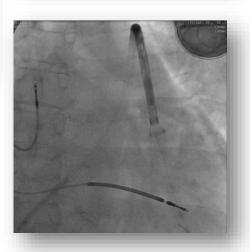
Things meant to stay put should stay where you put them

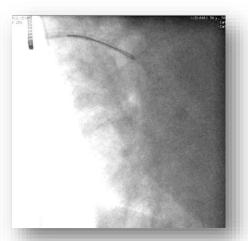


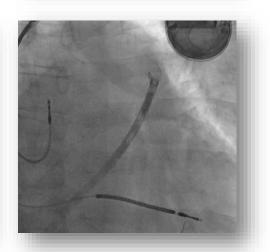
CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY


Rule # 2


Embolized material meant to stay put should probably come out

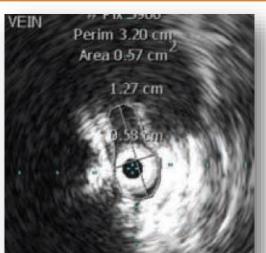

... Or parked where it will safely stay put!

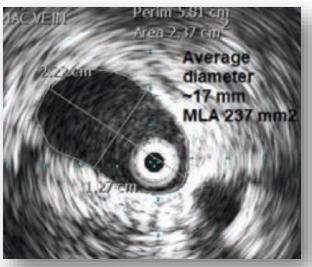

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

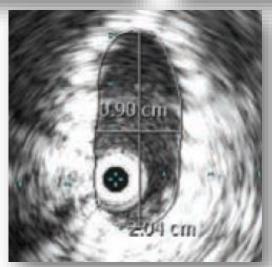

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Things meant to stay put should stay where you put them

- Stent migration: causes
 - latrogenic
 - Stent too small +++
 - Inaccurate estimation of true vessel caliber
 - Least accurate method:
 - "Eyeballing" it
 - Semi-quantitative method:
 - PTA balloon
 - Quantitative methods:
 - Measurement from calibrated angio software
 - CT, MR, US, IVUS


Quantitative methods: which is most accurate?


Imaging Common Iliac Vein Compression: Differences between CT Angiography, Intravascular Ultrasound and Venography


- Compared with IVUS,
 - venography <u>underestimates</u> stenosis by 14%.
 - <u>CTA overestimates</u> stenosis by 4.9%.
- CTA % stenosis = useful to predict IVUS % stenosis
- In absence of CTA, IVUS, not venography should be used to evaluate % stenosis

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

Area of Reference Common Iliac Vein, Corresponding to Theoretical Diameter and Matching Choice of Stent Size

Measured Reference Vessel Area (mm2)	theoretical Reference Vessel Diameter (mm)	Selected Stent Diameter (mm)
50.27	8	8-10
78.54	10	10-12
113.1	12	12-14
153.94	14	14-16
201.06	16	16-18
254.47	18	18-20
314.16	20	20-22
380.13	22	22-24

Stent migration: other causes

- Zones of instability
 - Abrupt difference in caliber between 2 contiguous zones
 - Stent extrusion
- High blood flow
- Rapid device deployment
- No long guidewire in the IVC (SVC) +++
- Unfamiliar equipement
- Inadequate experience, imaging

Rule #3

Some material can't safely come out and should be repositioned in a safe zone

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

JANUARY 25-27 2018
MARRIOTT RIVE GAUCHE & CONFERENCE CENTER
PARIS, FRANCE
WWW.CACVS.ORG

Misplaced, migrated stents 20/801 or 2.5% in 5 years

Cardiopulmonary migration

3: RA

Perc treatment

RV migration

2: RV :1 rigid; surgery 1 WS: extraction

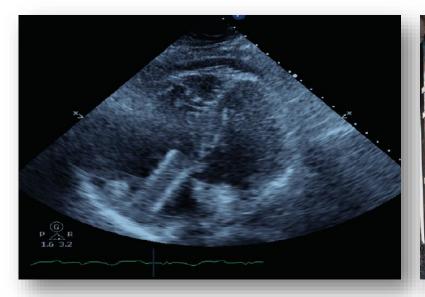
Which treatment?
Rigid stent → repo, surgery
Flexible stent → extraction

Clinical and Technical Aspects of Cases in which Misplaced or Migrated Endovascular Stents were Managed Percutaneously

Patient/Sex/ Age (y)	Intended Stent Location	Lost Stent Location	Reason for Misplacement or Migration	Stent Type and Size	Retrieval Technique	Largest Sheath (F)	Outcome/Stent Location
1/M/46	SVC	L PA	Too small	PS30	Reposition with balloon	9	R EIV
2/F/67	L CIV	IVC	Ruptured balloon	P308	Remove with balloon	10	Removed percutaneously
3/F/76	L CCA	Aorta	Dislodged from balloon	P294	Reposition with balloon	8	R CIA
4/M/62	SVC	R CIV	Too small	P308	Reposition with balloon	10	R CIV
	SVC	R CIV	Too small	P394	Reposition with balloon	10	L EIV, with WS2445
5/M/67	R renal artery	Aorta	Dislodged from balloon	P154	Reposition with balloon	8	L EIA
6/M/77	R renal artery	Aorta	Dislodged from balloon	P204	Reposition with balloon	14	L SCA
7/M/60	Hepatic IVC	Renal IVC	Ruptured balloon	P308	Reposition with balloon	12	IVC
8/F/43	Axillary vein	RV	Too small	P154	Unsuccessful	14	Surgically removed from heart
9/F/53	R renal artery	Aorta	Dislodged from balloon	P154	Reposition with balloon	8	L EIA
10/M/25	UE vein	R PA	Too small	P294	Reposition with balloon	8	L EIV
11/M/67	R UE vein	RV	Too small	WS	Snare	8	Removed percutaneously
12/M/58	L SCA	Aorta	Caught on catheter	P204	Reposition with balloon	8	L CIA
13/M/57	TIPS	IVC	Too small	WS1260	Snare/balloon	10	Removed percutaneously
14/F/70	R SCV	SVC	Too small	WS1455	Forceps, snare	12	Surgically removed from femoral vein
15/M/63	IVC	RA	Too small	WS1890	Guidewire snare	24	Removed percutaneously
16/M/44	TIPS	SMV	Too long	WS1260	Forceps, snare	24	Removed percutaneously
	TIPS	TIPS IVC	Too small	WS1690	Forceps, guidewire snare	24	Removed percutaneously
17/F/40	L renal artery	R EIA	Too small	P104	Reposition with balloon	9	R EIA
18/M/36	TIPS	RA	Too small	WS1068	Snare	12	Removed percutaneously
19/F/64	L CIV	L CIV IVC	Too small	WS1260	Guidewire snare, snare	16	Removed percutaneously
20/F/52	TIPS	TIPS IVC	Too long	WS1094	Snare	12	Removed percutaneously
21/M/54	Aorta	Aorta	Too small	WS1260	Snare	16	Surgically removed from femoral artery
22/M/53	L renal artery	Aorta	Caught on catheter	P154	Reposition with balloon	8	R CIA
23/M/40	TIPS	RA	Too long	WS1068	Guidewire snare, snare	14	Removed percutaneously
24/M/69	R CIA	Aorta	Dislodged from balloon	P154	Reposition with balloon	7	L CIA
25/F/40	R renal artery	Aorta	Too small	P104	Remove with balloon	20	Removed percutaneously

Note.—SVC = superior vena cava, L = left, CIV = common iliac vein, CCA = common carotid artery, R = right, IVC = inferior vena cava, UE = upper extremity, SCA = subclavian artery, SCV = subclavian vein, CIA = common iliac artery, PA = pulmonary artery, RV = right ventricle, RA = right atrium, SMV = superior mesenteric vein, EIA = external iliac artery, PS = Palmaz-Schatz, P = Palmaz, WS = Wallstent, EIV = external iliac vein. The size listed for each Wallstent is a combination of the stent diameter and the stent length when fully self-expanded. If stent size is not given, it is unknown.

Rule #4

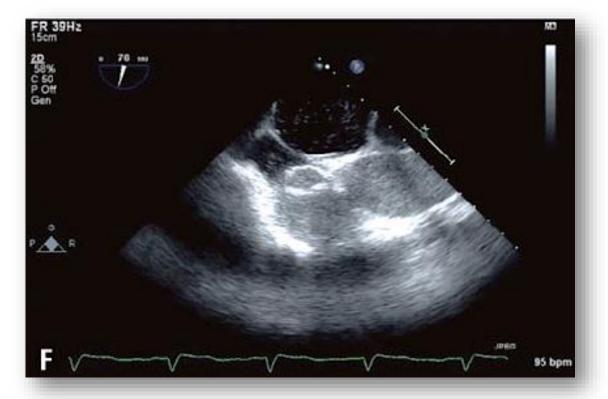

When things go wrong....call for help


Symptomatic stent in RV

- Brutal onset of chest pain
- ± syncope
- Arrhythmias
- Acute decompensation, hemodynamic collapse
- Cardiac insufficiency (TR), perforation, tamponnade
- Imaging
 - CXR, CT
 - Echocardiography +++

Complications related to stent migration, manipulation

- Intimal damage, dissection
- Arrhythmias, cardiac perforation, tamponnade
- Valvular damage, risk of acute decompensation
- Stent migration to a more dangerous or difficult place for percutaneous extraction or surgery
- Echocardiography to verify valvular function before and after any attempt to recuperate a stent from the RV


Author	Indication- Presentation	Migration to	Surgical vs Endovascular Removal	Outcome	Heart Injury	ECG Changes	Sex	Age	CEAP Score
Toyoda N et al ¹⁷	Chronic venous insufficiency Lower extremity edema, venous sta- sis dermatitis, and ulceration	Right ventricle	Surgical removal	Survived	None	Premature atrial contraction	М	33	5
Ashar RM et al ²⁰	Right iliac vein stenosis, DVT Right lower extrem- ity edema	Right ventricle and pulmonery artery	Endovascular removal	Survived	Not reported	Ventricular arrhythmia	M	32	3
El Feghaly M et al ¹⁶	May-Thurner syndrome Vulvar varicosities	Right ventricle	Endovascular removal	Survived	Moderate re- gurgitation of the tricuspid valve	Unknown	F	33	2
Ibrahim M et al ²¹	May-Thurner syndrome Left lower extremity edema	Right ventricle	Surgical removal	Survived	Tricuspid regurgitation, constrictive pericarditis, heart failure	Unknown	М	27	3
Hoffer E et al ²²	lliac vein steno- sis secondary to radiation therapy Unknown presentation	Right ventricle	Surgical removal	Survived	Moderate re- gurgitation of the tricuspid valve	Nonsustained ventricular tachycardia	F	53	Unknown
Mullens W et al ²³	May-Thurner syndrome Left lower extremity edema	Tricuspid valve, right ventricle	Surgical removal	Survived	Tricuspid regurgitation	Atrial fibrillation	F	55	3

Placido-Disla J et al. Vascular disease management 2017

Must we always remove a poorly-positioned or migrated stent?

Presentation

3 months

Take-away points

- Size does matter!
- Location, location, location!
 - Don't redeploy in same location implicated in stent migration
 - Rigid stents reposition in stable location
 - Flexible stents → percutaneous removal, if safe
 - Bare stent, permeable, non-occlusive, in stable zone with high flow in aysmptomatic patient → probably safe. »Let it be. »
 - Covered stent in same circumstances: may be safe?
 - Covered stent in other circumstances: redeploy to safe zone or remove

- Catheters, guidewires, temporary endovascular material, coils:
 - remove if possible.
- Use plugs instead of coils to occlude high flow vessels
- Stent trapped in RV
 - Symptomatic patient: arrythmias, decompensation
 - Echocardiography: assess valvular function, effusion before and after any attempt to recuperate a stent from the RV to R/O TV damage, perforation, tamponnade
 - Surgical removal + valve repair, as needed