CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

JANUARY 25-27 2018 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 25-27 2018 **MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE** Are all DCBs the same? What does basic science tell us? Frank Vermassen **Ghent University Hospital** Belgium

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

Disclosure

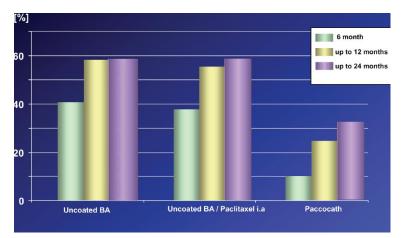
Speaker name:

Frank Vermassen

I have the following potential conflicts of interest to report:

x Consulting: Medtronic, Abbott Vascular, Bard, W.L. Gore, Terumo, Boston Scientific, Philips

- □ Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- Other(s)
- I do not have any potential conflict of interest

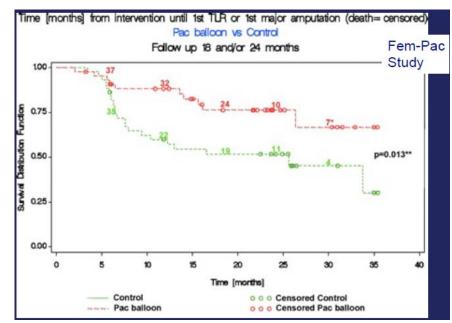


Drug coated balloons: The start

Thunder trial

Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg

Gunnar Tepe, M.D., Thomas Zeller, M.D., Thomas Albrecht, M.D., Stephan Heller, M.D., Uwe Schwarzwälder, M.D., Jean-Paul Beregi, M.D. Claus D. Claussen, M.D., Anja Oldenburg, M.D., Bruno Scheller, M.D., and Ulrich Speck, Ph.D.

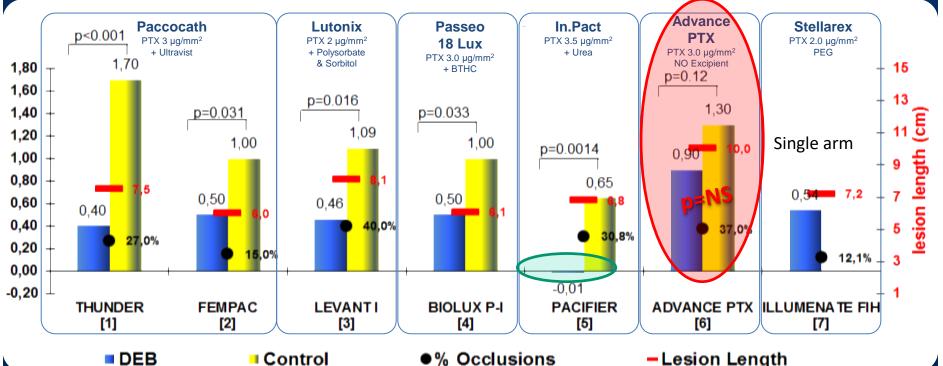

Binary restenosis in SFA lesions

Tepe NEJM 2008

Fempac trial

Inhibition of Restenosis in Femoropopliteal Arteries: Paclitaxel-Coated Versus Uncoated Balloon: Femoral Paclitaxel Randomized Pilot Trial

Michael Werk, Soenke Langner, Bianka Reinkensmeier, Hans-Frank Boettcher, Gunnar Tepe, Ulrich Dietz, Norbert Hosten, Bernd Hamm, Ulrich Speck and Jens Ricke


Freedom from TLR in SFA lesions

Werk Circulation 2008

Early Short term results

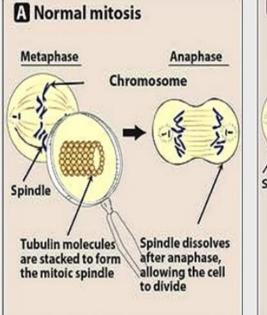
7 Trials/ 6 DEB technologies – 6 Mo Late Lumen Loss (Primary Endpoint)

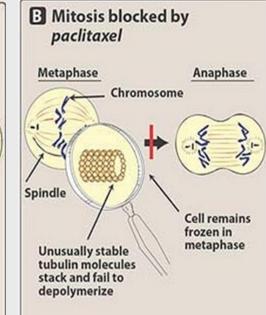
•% Occlusions

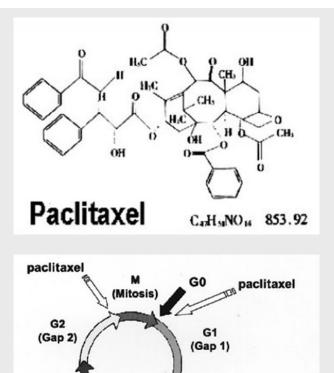
1 Tepe G et al. NEJM 2008 2 Werk M et al. Circulation 2008 3 Scheinert D et al. JACC 2014 4 Scheinert D et al JEVT 2015

5 Werk M et al Circ Cardiovasc Interv 2012 6 Scheinert D LINC 2013 oral presentation 7 Schroeder H Catheter Cardiovasc Interv 2015

Courtesy of *T Zeller* LINC 2016


Manufacturer	DCB	Drug	Dose (µg/mm²)	Excipient
Medtronic	IN.PACT	ΡΤΧ	3.5	Urea
BARD	LUTONIX	ΡΤΧ	2.0	Polysorbate and Sorbitol
Opectranetics	STELLAREX	ΡΤΧ	2.0	Polyethylene Glycol
BIOTRONIK	PASSEO 18 LUX	ΡΤΧ	3.0	Butyryl-tri-hexyl Citrate
COOK	ADVANCE 18 PTX	ΡΤΧ	3.0	none
Aachen Resonance	ELUTAX	ΡΤΧ	2.2	dextrane
Q2 Eurocor	FREEWAY	ΡΤΧ	3.0	shelloic acid
CARDIONOVUM®	LEGFLOW	ΡΤΧ	3.0	shelloic acid
Scientific	RANGER	ΡΤΧ	2.0	citrate ester
Vascular	LUMINOR	ΡΤΧ	3.0	organic ester
B BRAUN	SeQuent Please	ΡΤΧ	3.0	lopromide
BIOSENSORS	BIOPATH	ΡΤΧ	3.0	Shellac
	ORCHID	ΡΤΧ	3,0	Magnesium stearate
SurModics	SURVEIL	РТХ	3,0	unknown




Paclitaxel working mechanism

Affects function of microtubules

- Blocks cell division
- Leads to cell death

Cells that

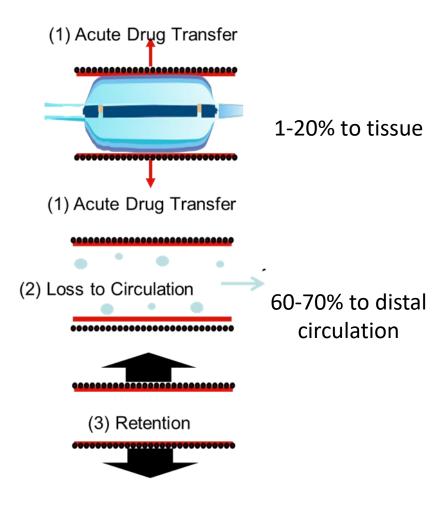
Cease division

rapamycin

S phase

(DNA synthesis)

Differences in DCB

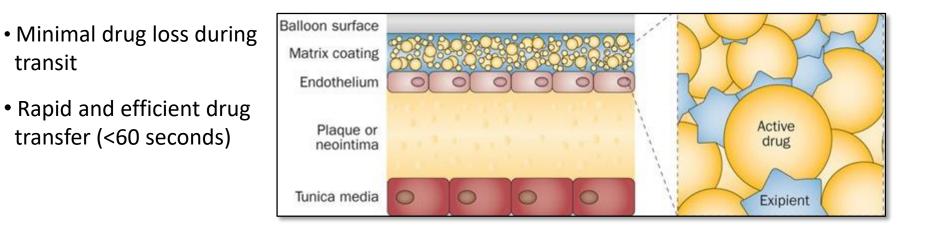

Manufacturer	DCB	Drug	DOSE (µg/mm²)	Excipient
Hedtronic 🛞	IN.PACT	РТХ	3.5	Urea
BARD	LUTONIX	РТХ	2.0	Polysorbate and Sorbitol
O Spectranetics [•]	STELLAREX	РТХ	2.0	Polyethylene Glycol
BIOTRONIK	PASSEO 18 LUX	РТХ	3.0	Butyryl-tri-hexyl Citrate
COOK	ADVANCE 18 PTX	РТХ	3.0	none
Aachen	ELUTAX	РТХ	2.2	dextrane
😢 Eurocor	FREEWAY	РТХ	3.0	shelloic acid
CARDIONOVUM*	LEGFLOW	РТХ	3.0	shelloic acid
Scientific	RANGER	РТХ	2.0	citrate ester
Nascular	LUMINOR	РТХ	3.0	organic ester
BBRAUN	SEQUENT PLEASE	РТХ	3.0	Iopromide
BIOSENSORS	BIOPATH	РТХ	3.0	Shellac
acoltec	ORCHID	РТХ	3.0	Magnesium stearate
SURMODICS	SURVEIL	РТХ	2.0	unknown

Same drug (paclitaxel) Different:

- ≠ Dose (2.0 3.5 µg/mm²)
- **≠** Drug Formulation
- **≠ Excipient**
- **≠** Surface Energy
- **≠** Coating Method

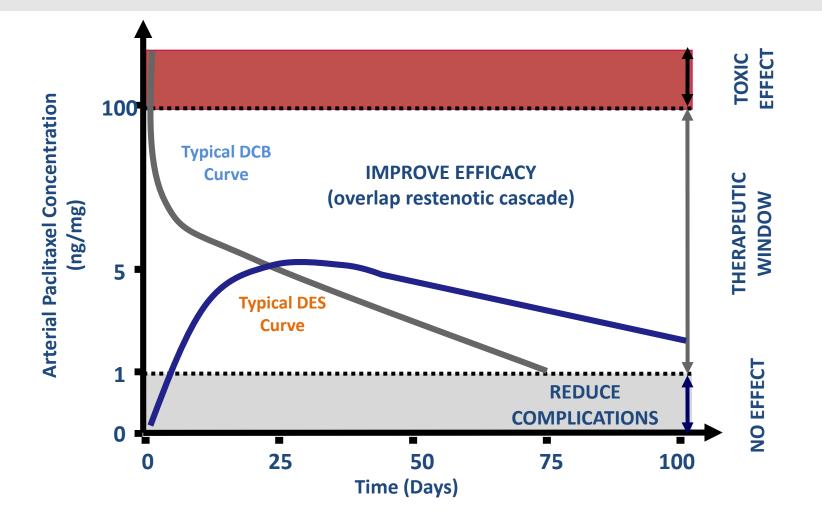
Determinants of DCB Biological Effect

- Antiproliferative agent (Paclitaxel)
 - Drug content on balloon surface
- Tissue transfer efficiency
 - Coating characteristics (i.e, hydrophobicity/hydrophilicity)
 - Excipient
 - Coating technique
- Loss to circulation (Insertiontransit-inflation) and risk of:
 - Particulate embolization
 - Systemic effects
- Paclitaxel tissue residency
 - Particle solubility
 - Presence in tissue during restenotic cascade⁷ (duration of retention)
 - Homogeneity of distribution

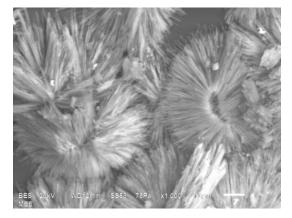

Architecture of DCB - Coating

Drug-coated Balloon Coating Characteristics

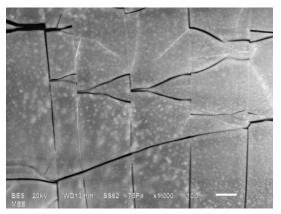
Polymer matrix coating:	drug molecules diffuse through a matrix
Porous coating:	drug molecules diffuse through pores
	drug molecules are encapsulated in the polymer and are released with resorption


Surface deposition: imprinting of the drug on the balloon surface

Drug-balloon surface bonding: strong enough to maintain drug integrity during transit while allowing efficient drug transfer:



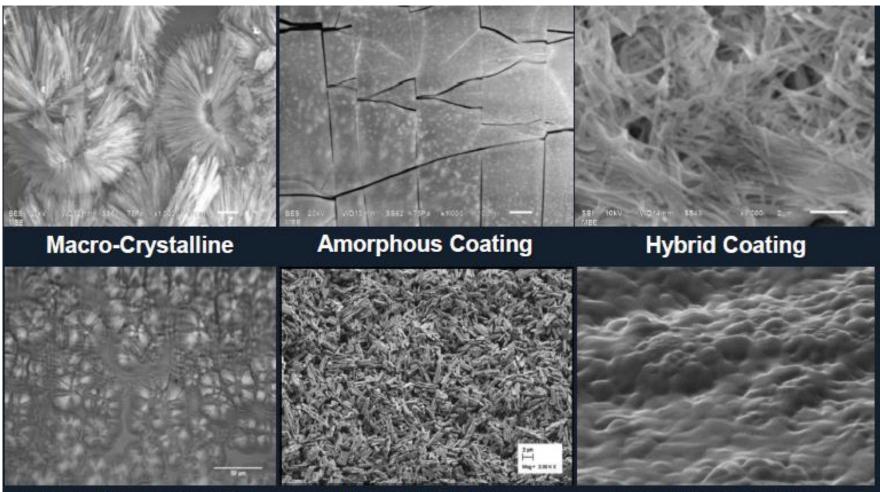
Difference between DES - DCB



Paclitaxel Formulation Types

Impact on Biological Performance

Crystalline Coating



Amorphous Coating

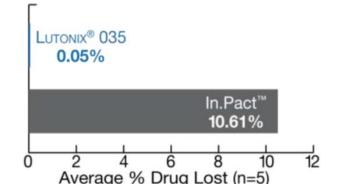
		Crystalline	Amorphous
<	Particles Released	+++	++
<	Uniform Coating	++	+++
	Drug Transfer to Vessel	+++	+++
<	Drug Retention vs. Time	+++	+
<	Biological Effectiveness	+++	++
	Vascular Toxicity	+++	++

Coating techniques - evolution

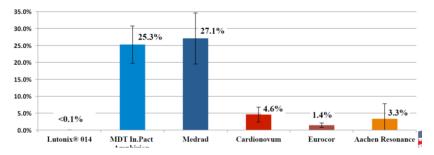
Crystalline Aggregate

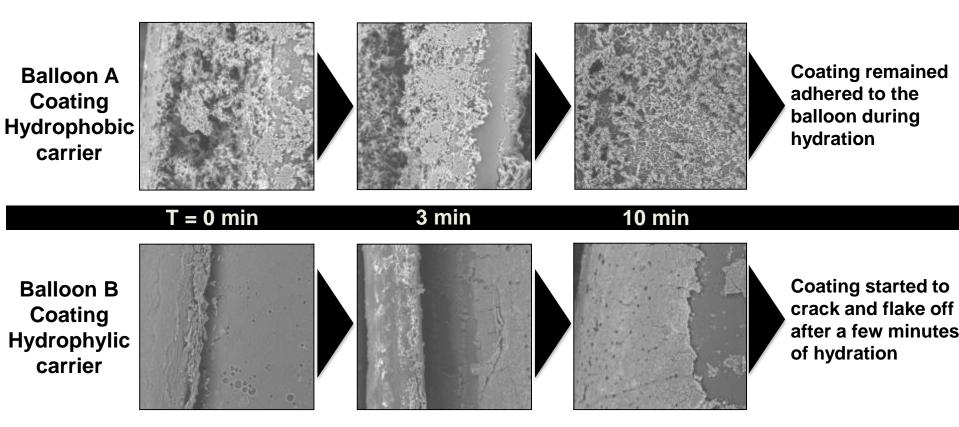
Micro-Crystalline

Nano-Encapsulation

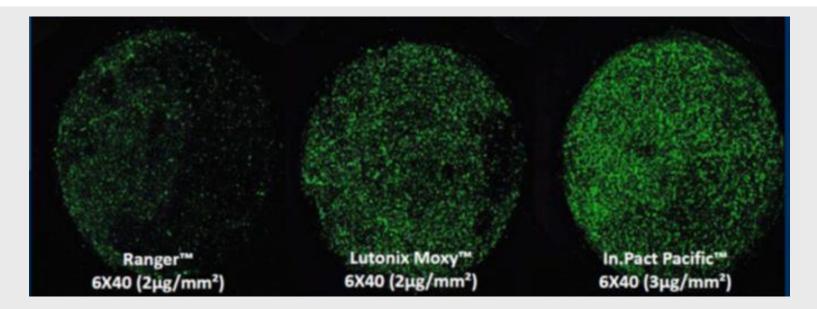

Coating integrity

Simulated shake test





Dry Inflate/Shake Test - 'Shaken off' Material (n=5)

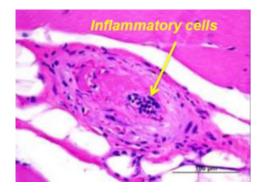

Coating Integrity: Adherence During Hydration

DCBs were submerged in phosphate buffered saline at 37°C and the coating was imaged at 300X. Data on file – Boston Scientific. Bench test results are not necessarily indicative of clinical performance.

Loss of particles during transfer

- DCBs were delivered in a peripheral track model with fluid recirculation
- Particulates lost downstream were collected with a 5 µm polycarbonate filter and are shown as green dots

Vascular changes in downstream skeletal muscle arteries


No difference after 1 inflation; Difference after 3 inflations

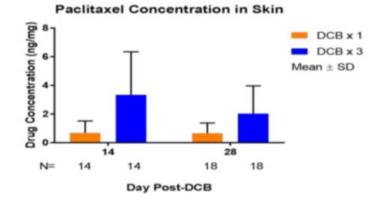
Lutonix 3x at 90 days

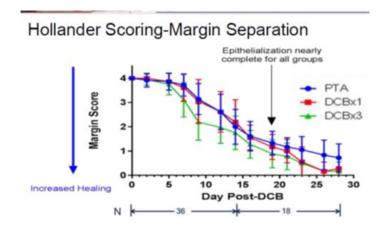
No.	No. of sections (Downstream muscle/coronary band)	Vascular Changes	Skeletal Muscle Necrosis/Fibrosis	Crystalline material
1	14 (12/2)	1	0	0
2	14 (12/2)	0	0	0
3	14 (12/2)	4	0	0
4	14 (12/2)	0	0	0
Total	56	5/56	0	0

In.Pact 3x at 90 days

No.	No. of sections (Downstream muscle/coronary band)	Vascular Changes	Skeletal Muscle Necrosis/Fibrosis	Crystalline material
1	13 (12/1)	6	0	0
2	13 (12/1)	5	1	0
3	13 (12/1)	7	2	1
4	13 (12/1)	8	2	1
5	13 (12/1)	8	3	1
6	13 (12/1)	4	1	1
Total	78	38	9	4

Kolodgie, JVIR 2016

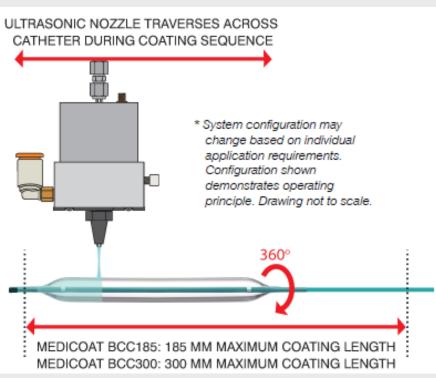



Effect of embolisation on wound healing

Wound Creation; Bilateral Treatment PTA or DCB x1 vs. DCB x3 (5-6 mm x 80 mm)



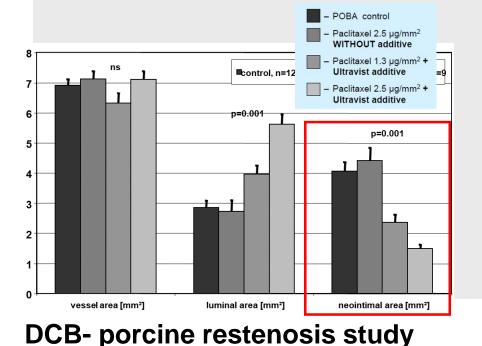
Courtesy J. Granada

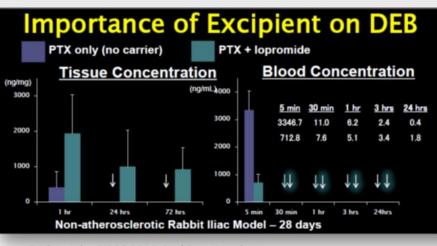


Coating technique

Goal: homogenous stable distribution of drug

On (semi-)inflated balloon


Uniform longitudinal and circumferential coating

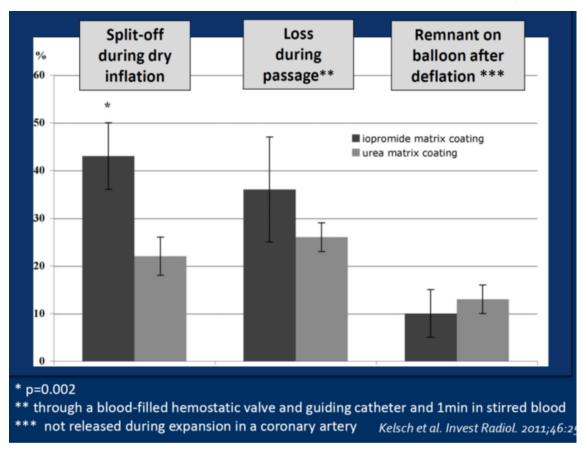


Excipient

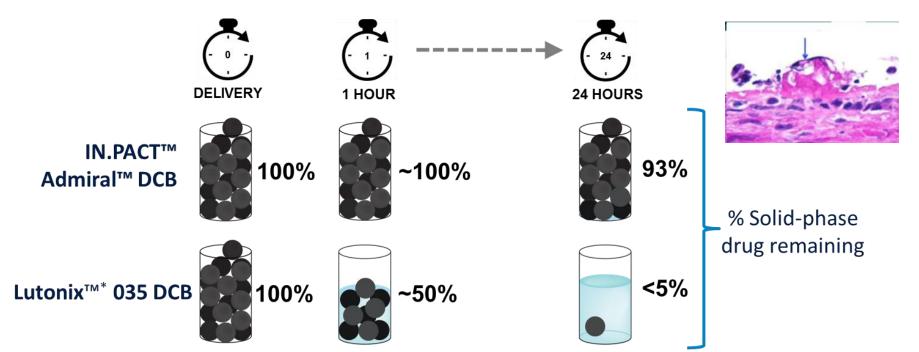
Supports the uptake of drug by vessel tissue

- Acts as a molecular spacer to increase paclitaxel surface exposure
- Facilitates paclitaxel transfer through its hydrophylic properties

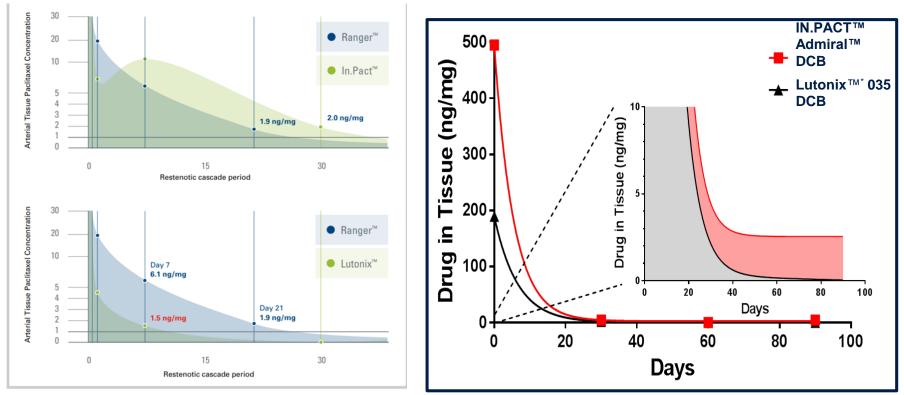
R.Virmani – CIRSE 2012 Oral Presentation


Excipient facilitates tissue transfer

Scheller et al. Circulation 2004;110:810 - 4


Different excipients – different properties

PTX adherence to balloon lopromide versus urea coating


What happens in vessel wall?

- Transfer of paclitaxel into the tissue and "storage" in the tissue occurs in the "solid phase".
- Afterwards "solid phase" paclitaxel is slowly dissoluted.
- Transition from solid-phase to soluble-phase occurs at different rates
- Crystaline PTX is better retained in the vessels wall than amorphous PTX.

Sustained Drug Availability

1. Data on file with Medtronic; Study PS747.

2. Virmani R, "Arterial wall response to drug-coated balloon use" presented at Charing Cross, London 2016

3. EVToday Vol 2 no 6

Peripheral Drug-Coated Balloons

	IN.PACT Admiral Medtronic	Lutonix [™] Bard	Stellarex™ Spectranetics	Ranger™ Boston Scientific
Product Image			5	2
Paclitaxel Dose	3 µg/mm²	2 µg/mm²	2 µg/mm²	2 µg/mm²
Coating Technology	FreePac™ hydrophilic coating (excipient: urea)	Proprietary hydrophilic nonpolymeric carrier	EnduraCoat™ coating (excipient: Poly-ethylene Glycol)	TransPax coating (excipient: Citrate ester)
Guidewire Compatibility	0.035 OTW	0.035 OTW	0.035 OTW	0.14/0.18
Matrix	SFA: 4-7 mm; 40-120 mm BTK: Recalled	SFA: 4-6 mm; 40-100 mm	SFA: 4-6 mm; 40-120 mm	SFA: 4-8 mm; 30-200 mm BTK: 2-4 mm; up to 150 mm
CE Mark	\checkmark	\checkmark	\checkmark	\checkmark
FDA Approval	\checkmark	\checkmark	\checkmark	

Conclusion

- DCB is a technology which was rapid medical community thanks to its SFA.
- DCB's are complex components: c' coating pr availab
- Although the propent the results.

cepted by the cacy in the

different on surface, on drug

and this will also affect