

Are there downstream effects & other adverse effects of DCB?

Koen Deloose, MD

Head Department Vascular Surgery

AZ Sint Blasius Dendermonde, Belgium

Disclosure slide

Speaker name: Koen Deloose, MD

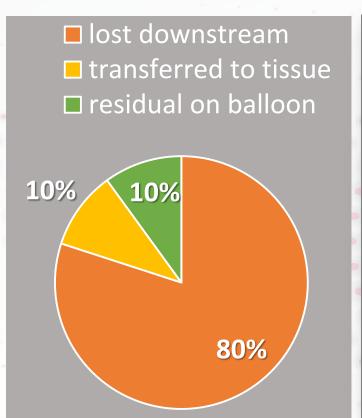
☐ I have the following potential conflicts of interest to report:

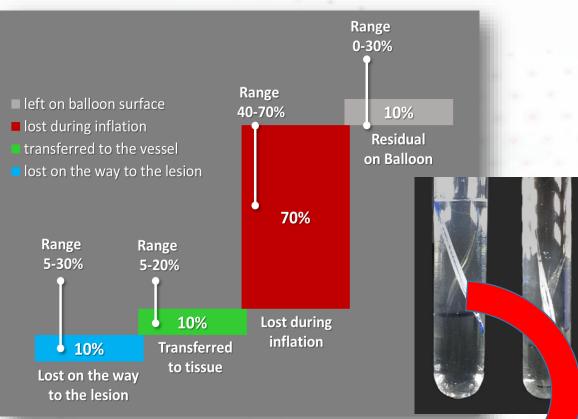
Consulting: Medtronic, Spectranetics, Biotronik, Abbott, Bard, iVascular, Bentley, Cook, GE Healthcare, Terumo, Contego Medical, Boston Scientific

- ☐ Employment in industry
- ☐ Stockholder of a healthcare company
- ☐ Owner of a healthcare company
- ☐ Other(s)

☐ I do not have any potential conflict of interest

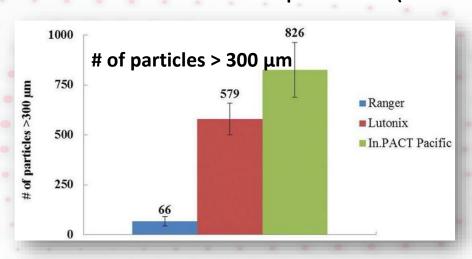
An effective DCB formulation ...

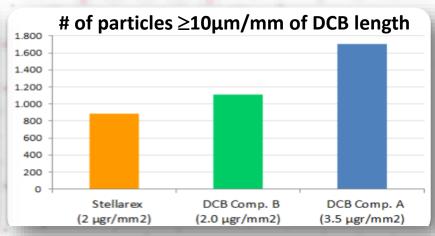



- Must deliver large quantities of the drug within seconds
- Distribute within the media in the first few days
- Therapeutic drug levels must be maintained >4 weeks (histologically proven tissue effect)

- Must allow rapid healing
- Effective drug delivery to target tissue while avoiding non-target effect (i.e. minimize emboli)

Most PTX is lost downstream

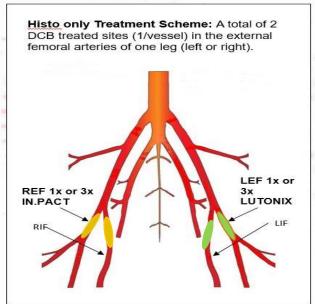

Mass effect: obliteration of microcirculation distally (cfr atherosclerotic debris)

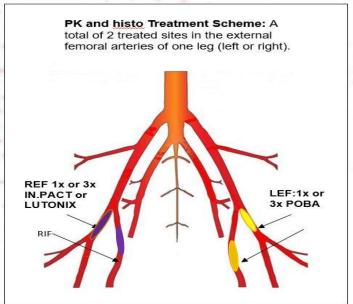

Drug effect: potential local tissue toxicity

Mass effect : obliteration microcirculation

Particle sizes > capillaries (5~10 μm) should matter

- However ptx mass and size lost from DCB likely smaller compared to atherosclerotic plaque debris released during normal PTA (0.3 – 4.6 mm) [1-2]
- 1. Gongora CA, Shibuya M, Wessler JD, McGregor J, Tellez A, Cheng Y, Conditt GB, Kaluza GL, Granada JF. Impact of Paclitaxel Dose on Tissue Pharmacokinetics and Vascular Healing: A Comparative Drug-Coated Balloon Study in the Familial Hypercholesterolemic Swine Model of Superficial Femoral In-Stent Restenosis. JACC Cardiovasc Interv. 2015 Jul;8(8):1115-1123
- 2. Siablis D, Karnabatidis D, Katsanos K, Ravazoula P, Kraniotis P, Kagadis GC. Outflow protection filters during percutaneous recanalization of lower extremities' arterial occlusions: a pilot study. Eur J Radiol. 2005 Aug;55(2):243-9
- 3. Karnabatidis D, Katsanos K, Kagadis GC, Ravazoula P, Diamantopoulos A, Nikiforidis GC, Siablis D. Distal embolism during percutaneous revascularization of infra-aortic arterial occlusive disease: an underestimated phenomenon. J Endovasc Ther. 2006 Jun;13(3):269-80



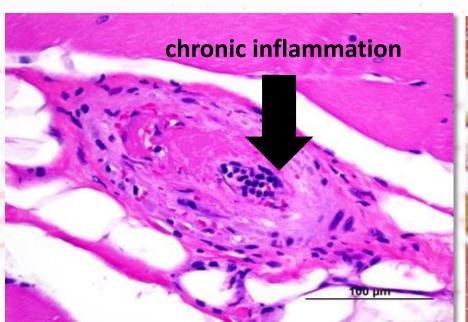

In Vivo Animal Testing:

Comparison of Particulate Embolization after Femoral Artery Treatment with IN.PACT Admiral versus Lutonix 035 Paclitaxel-Coated Balloons in Healthy Swine

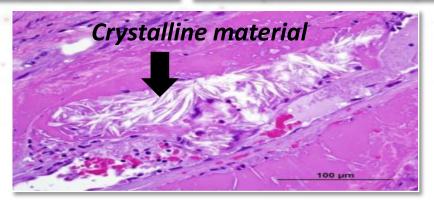
Frank D. Kolodgie, PhD, Erica Pacheco, MS, Kazuyuki Yahagi, MD, Hiroyoshi Mori, MD, Elena Ladich, MD, and Renu Virmani, MD

BLINDED comparison of effect of downstream particulates in distal vascular territories between IN.PACT Admiral vs Lutonix 035 in swine models @28 & 90 days, 1x and 3x dose: FIRST COMPARATIVE STUDY

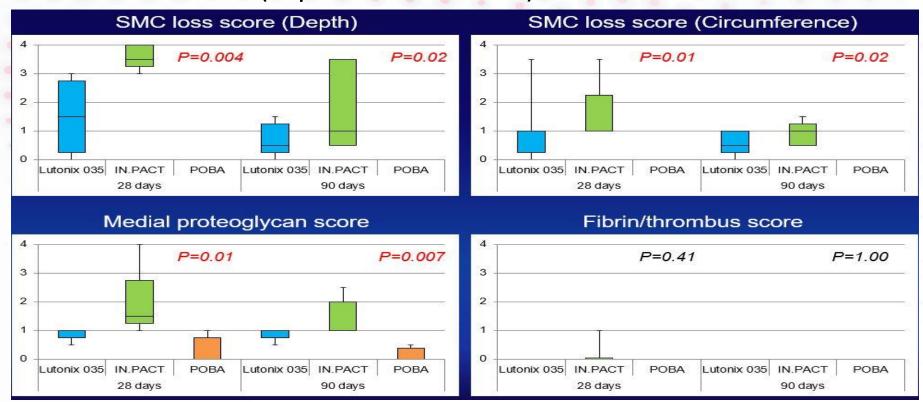
Study device	LUTONIX DCB	IN.PACT DCB	РОВА
Treated sites	SFA, 1x (single); 3x (3 DCB OL)	SFA, 1x (single); 3x (3 DCB OL)	SFA, 0 (single); 3x (POBA)
Tissues assessed for histopathology & distal drug concentration	Rectus Femori Artery not shown Gastrocnemius	Gracilis Semimembranosis Giuteus Maximus (on dorsal side)	Coronary band
28 d treated SFA N	1x = 5 ; 3x = 5,	1 x = 5 ; 3x = 5	1 x = 0 ; 3x = 4
90 d treated SFA N	3x = 5	3x = 5	3x = 4



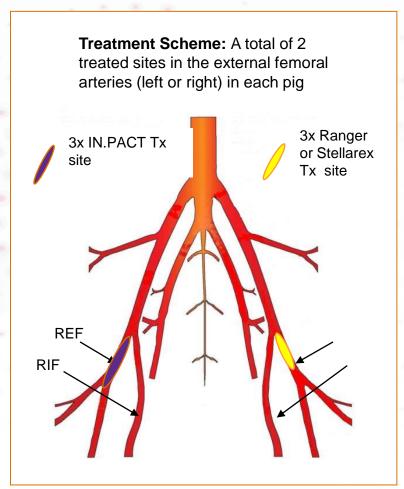
Histological section based analysis of downstream non-target organs (skeletal muscle and coronary band) associated with PTX @ 28 & 90 days post treatment in different concentrations


0		Survival Treatment & Arteries	Luton	ix 035	IN.F	ACT	P-v	alue
			Skeletal muscle	Coronary band	Skeletal muscle	Coronary band	Skeletal muscle	Coronary band
	Paclitaxel concentration in	28-day (1x, n=5)	1.3 (0.6-2.3)	1.5 (1.1-65.8)	60.8 (32.6-118.1)	189.0 (134.0-700.0)	0.009	0.02
	downstream tissues (ng/g)	28-day (3x, n=5)	3.7 (1.3-10.9)	31.5 (5.9-54.1)	170.9 (19.7-221.5)	871.0 (567.5-1315.0)	0.08	0.009
-		90-day (3x, n=4)	0.6 (0.5-6.4)	2.7 (0.0-25.5)	16.1 (12.8-319.2)	158.0 (6.3-1178.0)	0.009	0.05

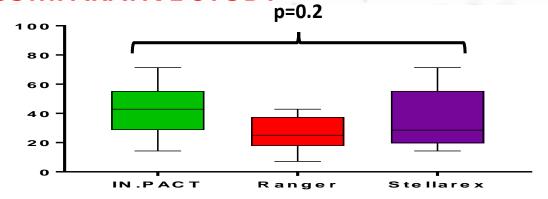
	Survival Treatment & Arteries	Lutonix 035	IN.PACT	P-value
Number of micro-vessels	28-day (1x, n=5)	1 (0-2)	4 (2-12)	0.03
with paclitaxel- associated	28-day (3x, n=5)	1 (0-12)	26 (11-34)	0.07
findings	90-day (3x, n=4)	0 (0-3)	11 (5-15)	0.02



Histological vascular changes @28 & 90 days with triple inflations of both DCB's: significant differences in histologic vascular changes between 2 DCB's (triple concentration)



In Vivo Animal Testing:


SECOND COMPARATIVE STUDY

BLINDED comparison of effect of downstream particulates in distal vascular territories between IN.PACT Admiral vs Stellarex vs Ranger in swine models @28 DAYS, 3x dose

SECOND COMPARATIVE STUDY

	Survival	Second C	omparative Stu	ıdy
	Treatment	IN.PACT (n=12)	Ranger (n=6)	Stellarex (n=6)
Sections with vascular changes in downstream nontarget tissues (%)	28-day (3x)	42.9	25	30

	Survival						
	Treatment	IN.PA	ACT	Ra	nger	Stel	larex
		Skeletal muscle	Coronary band	Skeletal muscle	Coronary band	Skeletal muscle	Coronary band
Paclitaxel concentration in downstream tissues (ng/g)	28-day (3x)	216.5 (326.1- 146.2)	911.3 (691.3- 1773.8)	91.5 (44.8- 116.9)	822.5 (347.9- 1450.6)	101.9 (44.6-163.8)	962.3 (149.9-1160)

First Compa	rative Study
Lutonix (n= 5)	IN.PACT (n=5)
7.7	38.5

First	t Compa	rative	Study
Lu	tonix	IN	I.PACT
Skeletal muscle	Coronary band	Skeletal muscle	Coronary band
(1.3 10.9)	(5.5 57.1)	170.9 (19.7- 221.5)	871.0 (567.5-1315.0)

12-Month Key Safety Outcomes

	LEVA	NT II¹	Global ²	IN.PAC	CT SFA ³	Long⁴	IN.PAC CTO ⁵	T Global ISR ⁶	Clinical ⁷	FIH	ILLUM EU RCT	INATE US Pivotal	Global
	PTA	Luto	nix 035	PTA			IN.PACT Admiral					***************************************	
Subjects	160	316	691	111	220	157	126	131	1406	80	328	300	371
All Thrombosis				3.7% (4/107)	1.4% (3/207)	3.7% (5/134)	4.3% (5/115)	0.8% (1/124)	2.9% (38/1311)				
Revasc. due to Thrombosis	0.7% (1/140)	0.4% (1/285)	1.3% (8/634)										
Major Amputation	0.0% (0/140)	0.3% (1/286)	0.5% (3/635)	0.0% (0/107)	0.0% (0/207)	0.0% (0/134)	0.0% (0/115)	0.0% (0/124)	0.2% (3/1311)	0.0%	0.0%	0.0%	0.3%

- 1. Rosenfield K, et al. NEJM:373:145-53 (2015).
- 2. Presented by Laurich C, SVS Chicago 2015.
- 3. Tepe G, et al. Circ 131:495-502 (2015).
- 4. Presented by Scheinert D, PCR Paris

- 5. Presented by Tepe G, Charing Cross London 2016.
- 6. Presented by Brodmann M, VIVA Las Vegas 2015.
- 7. Presented by Jaff M, VIVA Las Vegas 2016; includes subjects of imaging cohorts

IN CLAUDICANTS, THERE DOESN'T SEEM TO BE ANY IMPACT ON SAFETY

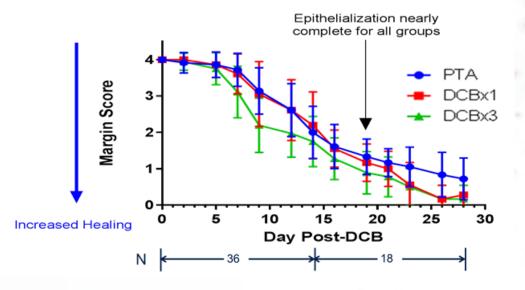
Pri	mary Effi	cacy	DEB	PTA	p
12-mc	onth LLL (m	m) ^[1] 0.6	1 ± 0.78	0.62 ± 0.78	0.950
12-n	nonth CD-T	LR ^[2] 9.2%	(18/196)	13.1% (14/107)	0.291
Prima	ry Safety	DEB	PTA	р	
Prima	ry Safety	DEB	РТА	р	
6-mor	ry Safety oth Death, onputation	DEB 17.7%	PTA 15.8% (18/114)	p 0.021 (non-info	


12-month Safety	DEB	РТА	p
Major Amputation	8.8% (20/227)	3.6% (4/111)	0.080
All-Cause Mortality	10.1% (23/227)	8.1% (9/111)	0.551
Death and Amputations [1]	35.2% (80/227)	25.2% (28/111)	0.064
Death, Major Amp, CD TLR [2]	26.9% (61/227)	23.4% (26/111)	0.496
Amputation Free Survival	81.1% (184/227)	89.2% (99/111)	0.057
Vound Healing (site reported)	73.8% (121/164)	76.9% (70/91)	0.579

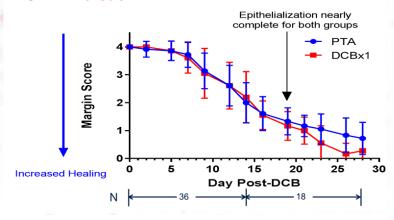
DOES DISTAL DOWNSTREAM PARTICLE EMBOLIZATION IMPACT WOUND HEALING AND COULD IT AFFECT CLINICAL OUTCOMES FOR CLI PATIENTS?

Experimental DCB use in presence of distal limb wounds

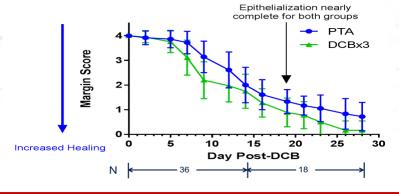
Wound Creation; Bilateral Treatment PTA or DCB x1 vs. DCB x3 (5-6 mm/80 mm)

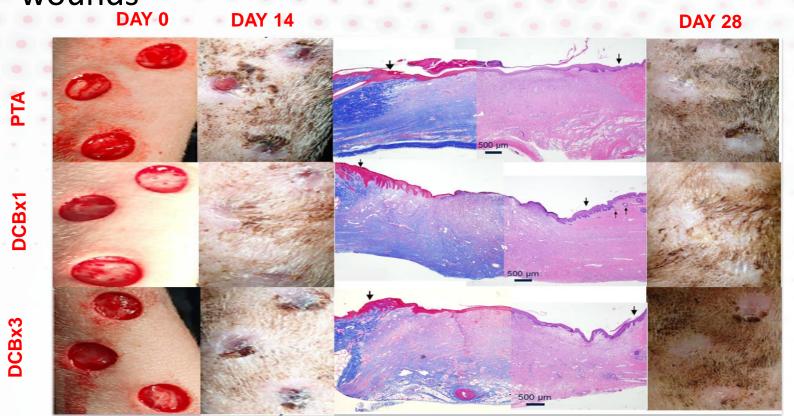

Paclitaxel Concentration in Skin

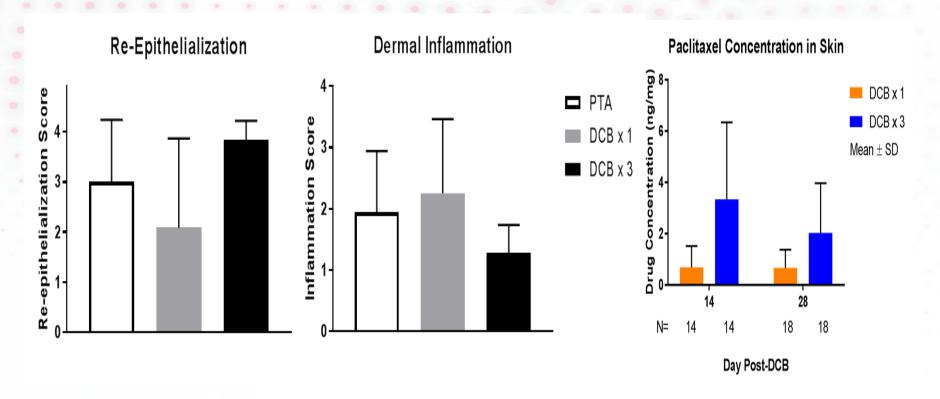
PK study (PTX concentration)
Histology study (neoepithelialization/dermal inflammation)


Experimental DCB use in presence of distal limb

wounds


Hollander Scoring-Margin Separation


DCB 1x versus PTA


DCB 3x versus PTA

Experimental DCB use in presence of distal limb wounds

Experimental DCB use in presence of distal limb wounds

Conclusions

 Downstream PTX particulates is a real phenomenon, present post dilatation with all DCB's, but with clear differences between different brands

 Clinical complications following DCB use in the SFA territory of claudicants are non existing

 However, the impact of PTX tissue residence on woundhealing in CLI patients with poor distal vessel run-off is still unknown