CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

JANUARY 25-27 2018

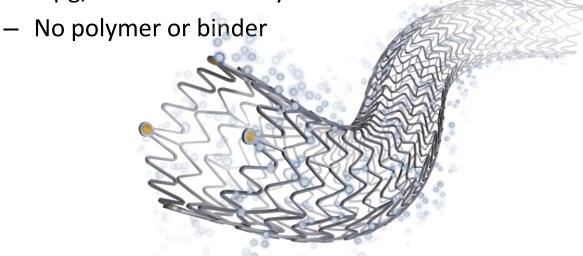
MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE

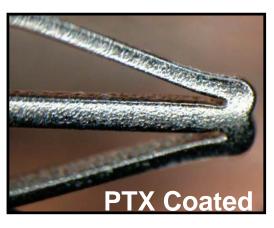
The latest evidences from the DES trials in peripheral arterial disease

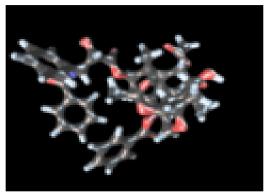
Michael D. Dake, MD

Thelma and Henry Doelger Professor

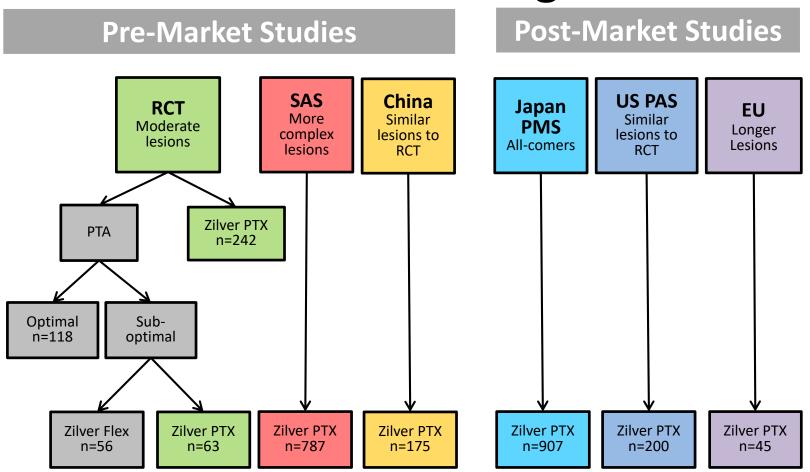
Stanford University School of Medicine


Dis	Disclosure				
Sp	eaker name: Michael D. Dake				
	I have the following potential conflicts of interest to report:				
	Consulting				
	Employment in industry				
	Shareholder in a healthcare company				
	Owner of a healthcare company				
	Other(s)				
	I do not have any potential conflict of interest				

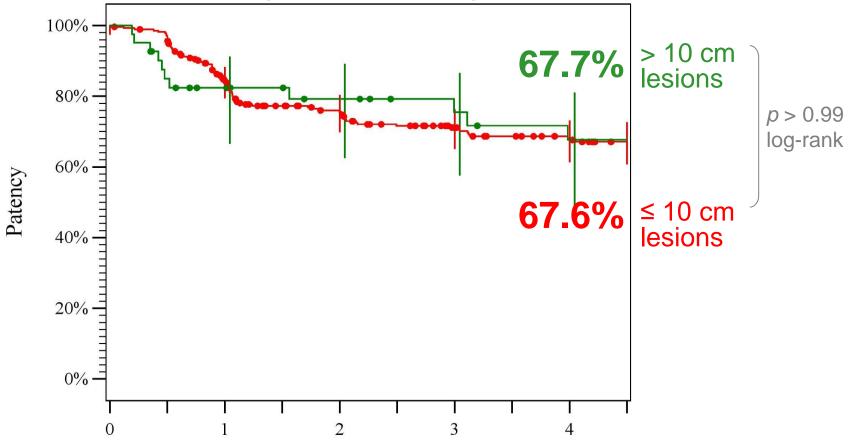

Zilver PTX Drug-Eluting Peripheral Stent


Mechanical scaffold:
 Zilver Flex® Stent Platform

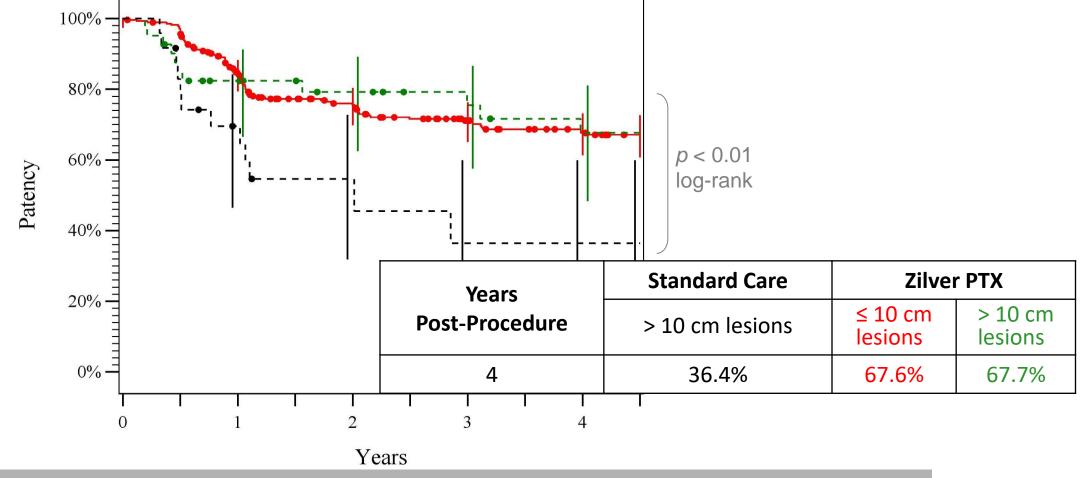
Drug therapy: Paclitaxel only


 $-3 \mu g/mm^2$ dose density

Global Clinical Program



More than 2400 patients included in the current Zilver PTX clinical program


But, what about the effect when treating longer, more complicated, real world lesions?

4-Year Primary Patency in > 10 cm Lesions

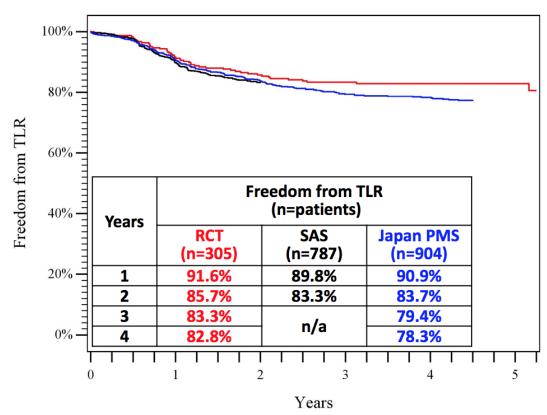
Zilver PTX results are similar in lesions ≤ 10 cm and lesions > 10 cm

4-Year Primary Patency in > 10 cm Lesions

Zilver PTX results are superior to standard care in lesions > 10 cm

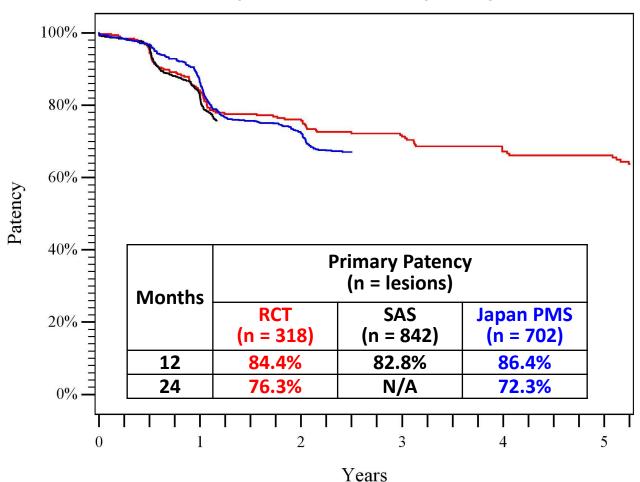
Global Clinical Program

	Zilver PTX RCT	Zilver PTX SAS	Zilver PTX Japan PMS	
	No significant untreated	inflow tract stenosis		
	At least one patent runoff vessel			
	Maximum 2 Zilver PTX stents	Maximum 4 Zilver PTX		
	per lesion	stents per patient	ALL patients treated with	
Key Study	Lesion length ≤ 14 cm	No ovelusions	Zilver PTX enrolled (up to	
Criteria	One lesion per limb	No exclusions	enrollment limit), NO exclusion criteria	
	No prior stent in SFA	ISR included	exclusion criteria	
	Excluded if serum creatinine > 2.0, renal failure, or dialysis	No exclusions		
Antiplatelets	Clopidogrel or ticlopidi	ne recommended for 60 days	s, aspirin indefinitely	
Follow-up	5 years	2 years	5 years	
Patency	DUS core laboratory analysis	DUS site	analysis	
Stent Integrity	X-	X-ray core laboratory analysis		


Increasingly complex patients and lesions

Patient Demographics and Comorbidities

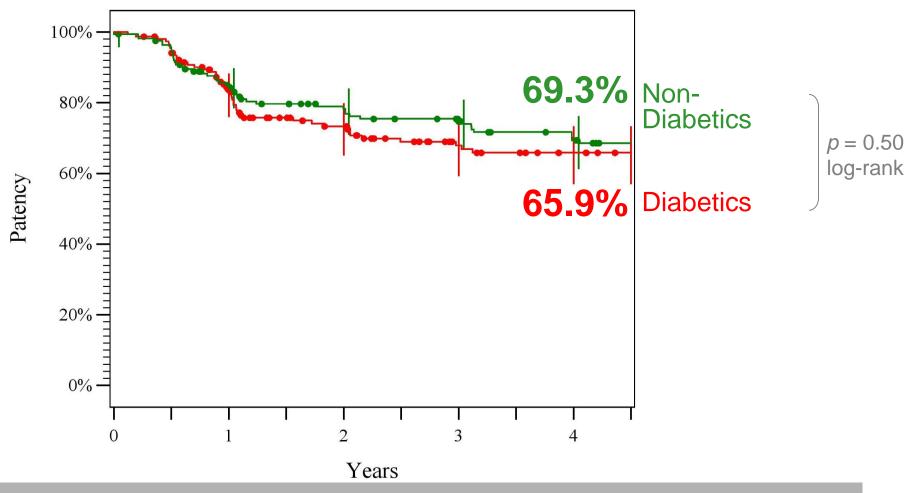
	RCT	SAS	Japan PMS
Patients	236	787	907
Age (years)	68 ± 10	67 ± 10	74 ± 9
Diabetes	50%	36%	59%
High cholesterol	76%	58%	61%
Hypertension	89%	80%	85%
Renal disease ¹	10%	11%	44%
Lesion length (cm)	6.6 ± 3.9	10.0 ± 8.2	14.7 ± 9.7
Total occlusions	33%	38%	42%
In-stent restenosis (ISR)	0%	15%	19%
Rutherford 4-6 (CLI)	9%	11%	20%


¹ Of patients with renal disease in the Japan PMS, 82% were in renal failure (eGFR < 60 and/or dialysis)

Freedom from TLR

Japan PMS TLR rate consistent with pre-market studies despite more complex lesions

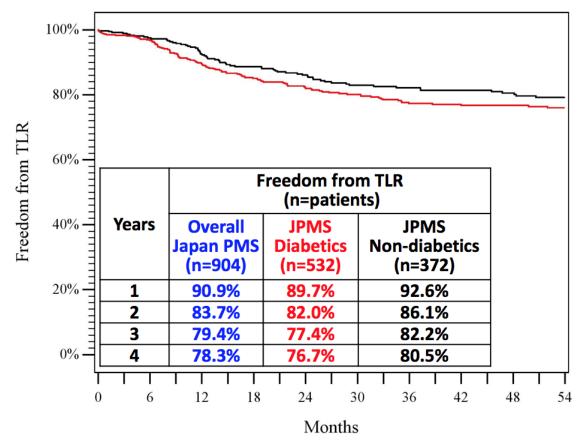
Primary Patency by DUS


Primary patency rate is consistent across studies

Zilver PTX Stentingin the Diabetic Patient Population

(Results from SAS, RCT, Japan PMS)

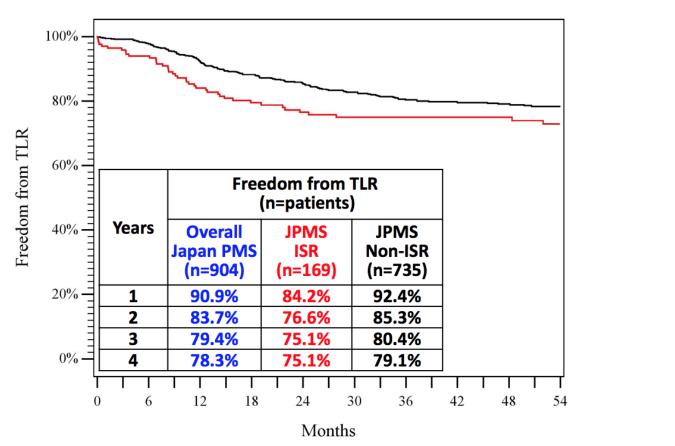
4-Year Primary Patency (PSVR < 2.0) Zilver PTX in Diabetics


Zilver PTX results are similar in diabetic and non-diabetic patients

Patient Demographics and Comorbidities

	Overall Zilver PTX Japan PMS	JPMS Diabetics	JPMS Non-diabetics	<i>p</i> -value
Patients	905	532	373	-
Age (years)	74 ± 9	72 ± 8	75 ± 9	< 0.01
Male	70%	71%	69%	NS
Diabetes	59%	100%	0%	-
High cholesterol	61%	69%	50%	< 0.01
Hypertension	85%	88%	82%	< 0.01
Pulmonary disease	8%	7%	10%	NS
Renal disease	44%	49%	36%	< 0.01
Renal failure (eGFR < 60 and/or "on dialysis")	35%	42%	27%	< 0.01

Freedom from TLR


Similar outcomes for diabetic and non-diabetic patients

Zilver PTX Stenting in the ISR Patient Population (Results from Japan PMS)

Baseline Lesion Characteristics

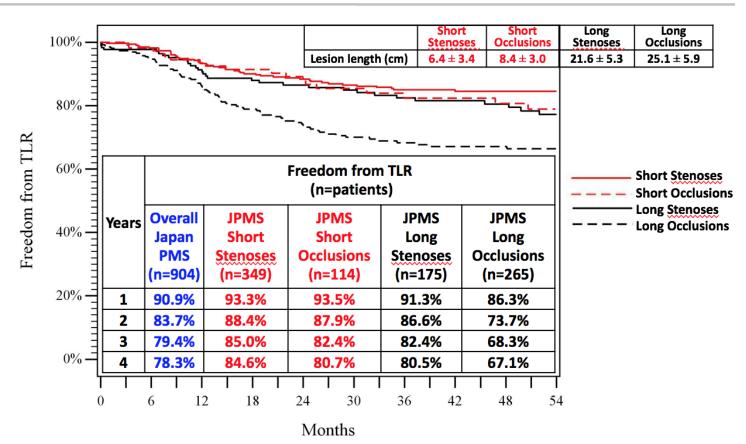
		Overall Zilver PTX Japan PMS	JPMS ISR	JPMS Non-ISR	<i>p</i> -value
Lesions		1080	202	878	-
Lesion length (cm)		14.6 ± 9.6	17.8 ± 10.4	14.0 ± 9.3	< 0.01
Diameter stenosis (%)		92 ± 11	92 ± 9	92 ± 11	NS
Total occlusion	Total occlusions		36%	43%	NS
In-stent restenosis		19%	100%	0%	-
	0	7%	6%	7%	
Patent runoff	1	32%	31%	32%	NS
vessels	2	33%	37%	32%	CNI
	3	29%	27%	29%	

Freedom from TLR

Nearly similar outcomes for ISR and non-ISR patients

Zilver PTX Stenting
Comparison of Total
Occlusions and Stenoses
(Results from Japan PMS)

Comparison of Total Occlusions and Stenoses

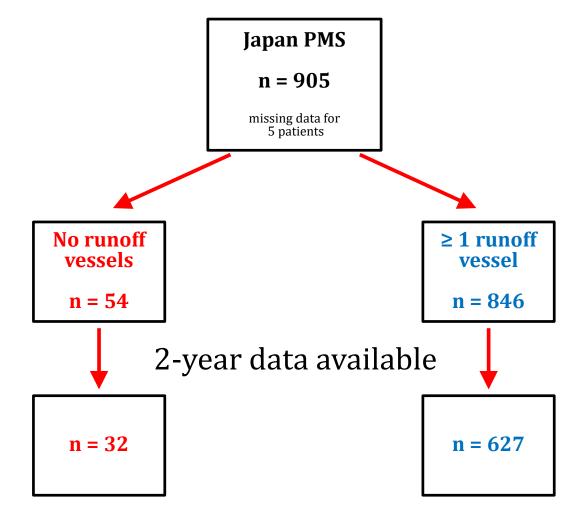

	Overall Zilver PTX Japan PMS	JPMS Occlusions	JPMS Stenoses	<i>p</i> -value
Lesions	1080	448	632	-
Lesion length (cm)	14.6 ± 9.6	19.7 ± 9.3	11.0 ± 8.1	< 0.01

Interaction between occlusion/stenosis and lesion length

	Length < 14 cm	Length ≥ 14 cm
Ctanasas	75%	39%
Stenoses	(440/583)	(192/496)
Osalijajana	25%	61%
Occlusions	(143/583)	(304/496)

Analysis looked at each of these 4 groups

Freedom from TLR



Similar outcomes for patients with <u>stenosed</u> lesions and total occlusions < 14 cm; somewhat lower freedom from TLR for total occlusions ≥ 14 cm

Zilver PTX Stenting in the No Run-off Patient Population (Results from Japan PMS)

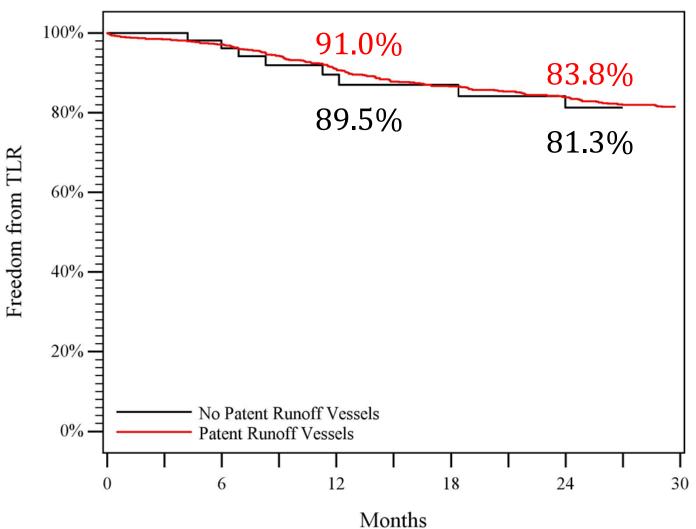
Subgroup of No Patent Runoff Vessels in Patients from the Japan PMS

Patient Demographics and Comorbidities

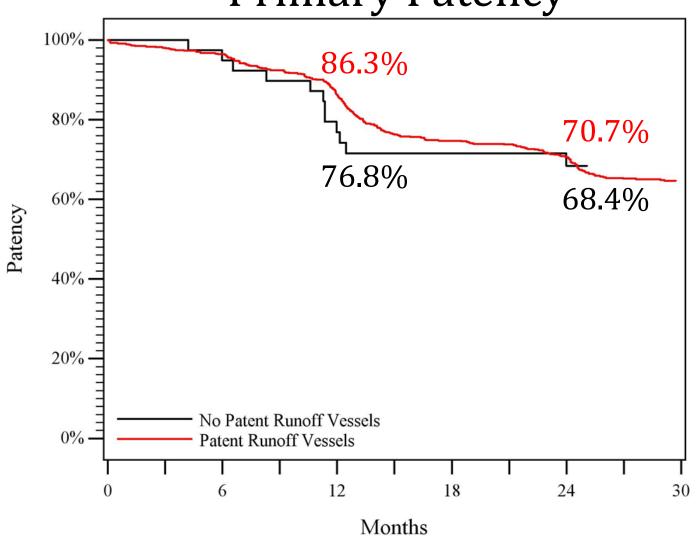
	No-Runoff	Runoff
Patients (n)	54	846
Age (years)	74 ± 9	73 ± 9
Male	69%	70%
Diabetes	70%	58%
High cholesterol	61%	61%
Hypertension	89%	85%
Pulmonary disease	7%	8%
Critical limb ischemia	44.8%	19.7%

No statistically significant differences except higher proportion of CLI

Baseline Lesion Characteristics

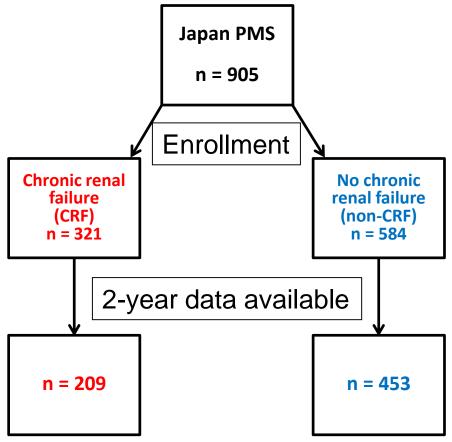

		No-Runoff	Runoff
Lesions (n))	71	1003
Lesion length (mm)		138 ± 96	147 ± 96
Diameter s (%)	tenosis	93 ± 9	92 ± 11
Total occlusions		44%	41%
In-stent restenosis		17%	19%
	0	100%	N/A
Patent	1		34%
runoff vessels	2	N/A	35%
	≥3		31%

No statistically significant differences between the two groups


Safety

- No device or procedure related deaths
- Stent integrity through 1 year
 - 0.0% fracture rate in no runoff group
 - 2.5% fracture rate in runoff group
- Low rate of thrombosis through 2 years
- Three patients in the no runoff group and seven patients in the runoff group had an amputation through 2 years
 - All three amputations in the no runoff group occurred within 2 months of the initial procedure likely reflecting a more advanced stage of PAD

Freedom from TLR



*Zilver PTX Stenting*in the Renal Failure Patient Population (Results from Japan PMS)

Chronic Renal Failure Patients from the Japan PMS

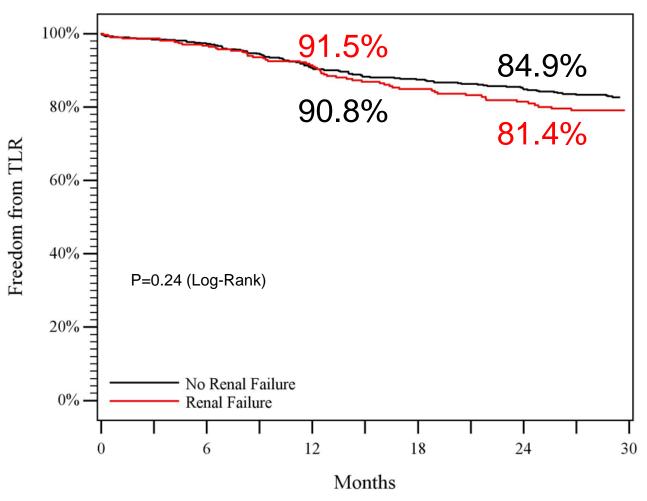
CRF was defined as eGFR < 60 mL/min/1.73m² and/or dialysis

Patient Demographics and Comorbidities

	CRF	Non-CRF
Patients	321	584
Age (years)*	72 ± 9	74 ± 8
Male	68%	72%
Diabetes*	69%	53%
High cholesterol	57%	63%
Hypertension	86%	85%
Pulmonary disease*	19%	6%
* p<0.05		

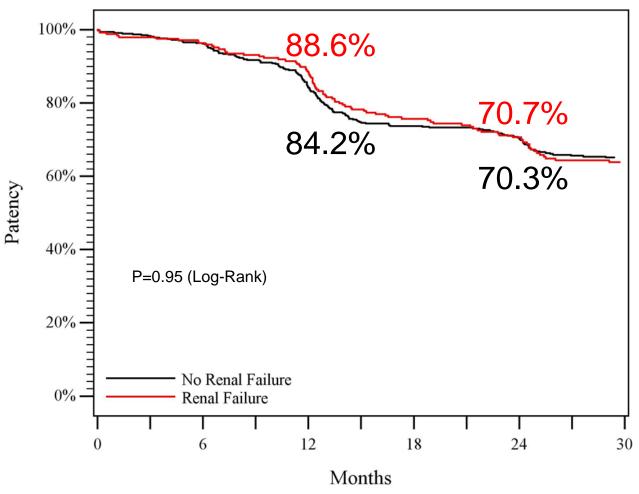
Higher incidence of diabetes and pulmonary disease in the CRF group

Baseline Lesion Characteristics


		CRF	Non-CRF
Lesions		381	699
Lesion length (r	nm)	146 ± 93	147 ± 98
Diameter steno	sis (%)	91 ± 10	92 ± 11
Total occlusions*		34%	45%
In-stent restenosis		17%	20%
Severe calcification*		32%	9%
CLI; Rutherford (≥4) *		33%	15%
5	0	7%	7%
Patent runoff vessels	1	35%	30%
VC33C13	>2	58%	63%
* p<0.05			

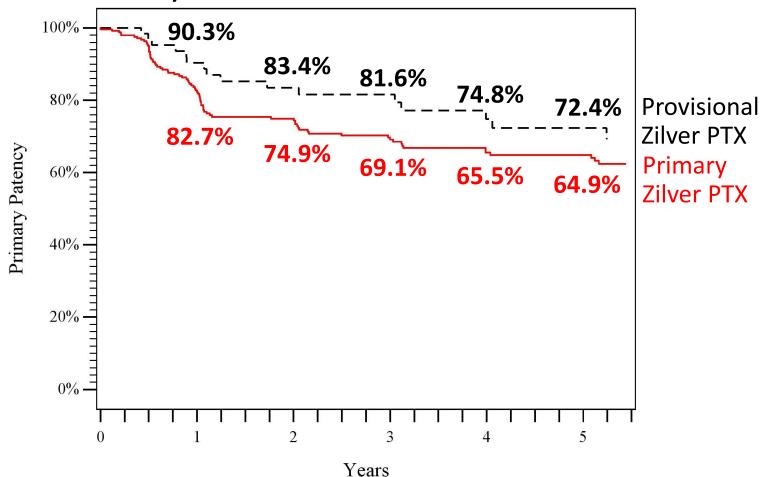
Higher rates of severe calcification and CLI in the CRF group

Safety


- No device or procedure related deaths
- 1249 stents implanted
 - -0.5% fracture rate in CRF group through 1 year
 - -3.7% fracture rate in non-CRF group through 1 year
- Through 2 years, low rate of thrombosis
- Through 2 years, 8 patients in the CRF group (2.5%) and 2 patients in the non-CRF group (0.3%) had an amputation
 - -Four of these occurred within 2 months from the initial procedure likely reflecting a more advanced stage of PAD

Freedom from TLR

Freedom from TLR rates are similar through 2 years


Primary Patency

Primary patency rates are similar through 2 years

5-year Primary Patency (PSVR < 2.0)

Primary Zilver PTX vs. Provisional Zilver PTX

4 & 5 year Overall Conclusions

- Large amount of clinical data ranging from carefully controlled Level I evidence to large, global, real-world experience
- As expected, patient population and lesion characteristics become more challenging in real-world, all-comer studies
- 4-year Japan PMS and 5-year RCT results are positive and confirm the long-term benefit of Zilver PTX
 - Freedom from TLR remains consistent across studies and provides added support for the established performance of the Zilver PTX stent