CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 25-27 2018

MARRIOTT RIVE GAUCHE & CONFERENCE CENTER, PARIS, FRANCE

DCB level 1 evidence review

Raphaël COSCAS Vascular Surgery Department Ambroise Paré Hospital, AP-HP and Paris-Ouest University Boulogne-Billancourt, France

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

Disclosure

Speaker name:

Raphael COSCAS

- I have the following potential conflicts of interest to report:
- Consulting: Medtronic, Spectranetics, Terumo
- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- Other(s)
- I do not have any potential conflict of interest

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

Evidence	Grade of recommandation
Level 1: RCT with strong power Meta-analysis of RCTs	Grade A: Established proof
Level 2: RCT with low power Non randomized controlled trials	Grade B: Presumed
Level 3: Case-control studies	
Level 4: Comparative studies with major bias Retrospective studies, Case series Transversal or Longitudinal epidemiologic studies	Grade C: Low level

Where are the RCTs with DCBs ?

3 DCBs with large RCTs

	IN.Pact Medtronic	Lutonix Bard	Stellarex Spectranetics	
PTX concentration	3,5	2	2	
Excipient	Urea	Polysorbate Sorbitol	Polyethylene glycol	
PTX type	Crystalline	Hybrid	Hybrid	
Balloon state during PTX deposition	Inflated	Inflated	Inflated	

The Ideal RCT

Large N / Multicenter Selected relevant population Adequate control therapy Double blind Blinded duplex and angio corelab Clinical event committee Independent data safety monitoring board **External monitoring Optimal DCB use** Relevant clinical endpoint

3 balloons are supported by high quality RCTs

Similar exclusion criterias

Short lesions < 3-4cm Rutherford 5, 6 In-stent restenosis Failure to cross the lesion Failed PTA Severe calcification

neievant ennear enuponte (r r j

3 balloons are supported by high quality RCTs

	IN.Pact In.Pact SFA	Lutonix Levant 2	Stellarex Illumenate EU RCT	Stellarex Illumenate US Pivotal
N (randomization)	331 (2:1)	476 (3:1)	294 (3:1)	300 (2:1)
Age (y)	67.5 ± 9.5	67.8 ± 4.1	67 ± 9	68 ± 10
Claudicants (%)	91	92	98	96
Lesion Length (cm)	8.9 ± 4.9	6.3 ± 4.1	7.2 ± 5.2	8.0 ± 4.5
Occlusions (%)	26	21	19	19

Data from DCB groups

In.Pact SFA at 1 year

Tepe et al. IN.PACT SFA Trial Investigators, Circulation 2015

In.Pact SFA at 3 years

Schneider et al. IN.PACT SFA Trial Investigators, Circ Cardiovasc Interv. 2018

In.Pact SFA at 3 years

	IN.PACT DCB (N=220)	PTA (N=111)	P-value [†]
Clinically-driven TLR [1]	15.2% (30/197)	31.1% (32/103)	0.002
All TLR ^[2]	16.2% (32/197)	34.0% (35/103)	< 0.001
Time to First CD-TLR	542.9 ± 278.2	302.9 ± 213.0	< 0.001
Primary Sustained Clinical Improvement ^[3]	68.7% (114/166)	52.6% (51/97)	0.012
ABI / TBI ^[4]	0.917 ± 0.231	0.894 ± 0.194	0.429

Schneider et al. IN.PACT SFA Trial Investigators, Circ Cardiovasc Interv. 2018

In.Pact SFA at 3 years 6-Minute Walk Test*

*Data collected in IN.PACT SFA II phase only

Levant 2 trial

loon; however, according to the study protocol, the patients, investigators who completed followup, vascular-laboratory personnel, core laboratory evaluators, and members of the clinical-events committee were unaware of the treatment received. Clinicians were to make treatment decisions subsequent to the initial procedure on the basis of the symptoms of the patients during follow-up, without knowledge of treatment assignment or findings on duplex ultrasonography.

LEVANT II Trial, N Eng J Med 2015

Levant 2 trial

LEVANT II Trial, N Eng J Med 2015

Levant 2 trial

End Point	Drug-Coated Balloon	Standard Angioplasty Balloon	Difference	P Value
	no./tot	al no. (%)	percentage points (95% CI)	
Primary end points				
Primary patency at 12 mo†	172/264 (65.2)	71/135 (52.6)	12.6 (2.4 to 22.8)	0.02‡
Restenosis without target- lesion revascularization§	57/92 (62.0)	40/64 (62.5)	-0.5 (-16.0 to 14.9)	_
Target-lesion revascularization§	35/92 (38.0)	24/64 (37.5)	0.5 (-14.9 to 16.0)	_
Safety composite¶	240/286 (83.9)	113/143 (79.0)	4.9 (-2.6 to 12.3)	0.005
Perioperative death	0/308	0/155	0**	_
Index-limb amputation	1/286 (0.3)	0/140	0.3 (-0.3 to 1.0)	
Index-limb reintervention	44/285 (15.4)	30/143 (21.0)	-5.5 (-13.4 to 2.3)	_
Index-limb-related death	0/285	0/140	0	
Secondary end points				
Total target-lesion revascularization	35/285 (12.3)	24/143 (16.8)	-4.5 (-11.7 to 2.7)	0.21‡
Total target-vessel revascularization	38/285 (13.3)	26/143 (18.2)	-4.8 (-12.3 to 2.6)	0.19
Death	7/290 (2.4)	4/144 (2.8)	-0.4 (-3.6 to 2.8)	0.82
Major amputation	1/286 (0.3)	0/140	0.3 (-0.3 to 1.0)	0.37
Reintervention for thrombosis	1/285 (0.4)	1/140 (0.7)	-0.4 (-1.9 to 1.2)	0.62

Levant 2 trial – The role of the technique

Illumenate EU RCT

Investigators and research staff at the study centers were not blinded to treatment assignment given visual differences in the study devices. Patients remained blinded to treatment assignment throughout the study.

 \bigcirc Spectranetics[•]

Independent core laboratories analyzed all images, including duplex ultrasound (VasCore, Massachusetts General Hospital, Boston, MA) and angiography (SynvaCor, Springfield, IL). Core laboratory readers remained blinded to treatment assignment. A blinded Clinical Events Committee who did not participate in the study adjudicated all adverse events. An independent Data Safety and Monitoring Board monitored the study for safety. Data were monitored for accuracy with 100% source document verification.

Schroeder H et al. ILLUMENATE EU RCT, Circulation 2017

Illumenate EU RCT at 1 year *Spectranetics*

Schroeder H et al. ILLUMENATE EU RCT, Circulation 2017

Brodmann et al. ILLUMENATE EU RCT, Oral presentation, Viva 2017

Illumenate EU RCT

 \bigcirc Spectranetics[•]

➤The DCB cohort maintained similar outcomes with 60% fewer reinterventions

Brodmann et al. ILLUMENATE EU RCT, Oral presentation, Viva 2017

Illumenate US Pivotal **\$\$ Spectranetics***

the research team was unable to be blinded because of the visual differences between the DCB and standard balloon angioplasty catheters (uncoated). Research and treatment staff were educated and required to maintain the blinding status to patients. Following the procedure, patients were prescribed clopidogrel or ticlopidine for 30 days and aspirin for the duration of the study. The 1-month follow-up to review adverse events and medication compliance was conducted via office visit or telephone contact. Patients returned for clinical visits at 6 and 12 months, which included clinical assessment, functional status, adverse events, medication compliance, and duplex ultrasound (DUS). Follow-up is ongoing through 5 years.

Krishnan P et al. ILLUMENATE US Pivotal, Circulation 2017

Illumenate US Pivotal **\$\$ Spectranetics**

Krishnan P et al. ILLUMENATE US Pivotal, Circulation 2017

Primary patency at 12 m in RCTs (Core lab)

Inspired by slides from K. Keirse

Primary patency at 24 m in RCTs (Core lab)

2 Laird JR, Schneider PA, Tepe G, Brodmann M, Zeller T, Metzger C, Krishnan P, Scheinert D, Micari A, Cohen DJ, Wang H, Hasenbank MS, Jaff MR; IN.PACT SFA Trial Investigators. Durability of Treatment Effect Using a Drug-Coated Balloon for Femoropopliteal Lesions: 24-Month Results of IN.PACT SFA. J Am Coll Cardiol. 2015 Dec 1;66(21):2329-38

3 Laurich C, oral presentation at SVS Annual Meeting June 2015, Chicago

Global view of primary patency of DCBs in RCT

Inspired by slides from K. Keirse

Significant benefits in terms of

TLR at 12 m and 24 m Primary patency at 6 and 12 m LLL at 6 m

Katsanos K et al. J Endovasc Ther. 2016 Jongsma H et al. J Vasc Surg. 2016 Giacoppo D et al. JACC Cardiovasc Interv. 2016 Kayssi A et al. Cochrane Database Syst Rev. 2016

DCB in ISR

Study	Patients, n			Diabetes, %	CLI, %	Lesion length, mm	Diameter stenosis, %	ISR class III, %	Bail-out stenting, n (%)*
COPACABANA ¹⁹	88	38 67	.9 59.3	44.5	9.7	114.5	79.4	26.9	N/R
DEBATE ISR ¹⁸	86	36 75	.0 63.7	100	70.8	134.5	92.5	58.0	DCB: 7/44 (15.9%); plain balloon angioplasty: 11/42 (26.2%)
FAIR ⁹	119	19 68	.0 61.7	37.5	7.6	81.7	89.5	28.7	DCB: 1/62 (1.6%); plain balloon angioplasty: 4/57 (7.0%)
PACUBA I ¹⁰	74	74 68	.2 58.0	45.0	N/R	178.5	N/R	29.5	DCB: 5/35 (14.2%); plain balloon angioplasty: 2/39 (5.1%)
PACUBA I ¹⁰	74	74 68	.2 58.0	45.0	N/R	178.5	N/R	29.5	DCB: 1/62 (1.6%); plain l angioplasty: 4/57 (7.0%) DCB: 5/35 (14.2%); plain

Overall mean values are reported. *Data are presented as number of events/total number of patients (proportion) for each treatment group. CLI: critical limb ischaemia; DCB: drug-coated balloon; ISR: in-stent restenosis; N/R: not reported. Study acronyms: COPACABANA: Cotavance™ Paclitaxel-Coated Balloon Versus Uncoated Balloon Angioplasty for Treatment of In-stent Restenosis in SFA and Popliteal Arteries; DEBATE ISR: Drug Eluting Balloon in peripherAl inTErvention for In-Stent Restenosis; FAIR: Femoral Artery In-Stent Restenosis; PACUBA I: A Randomised Clinical Trial of PAClitaxel drUg-eluting BAlloon Versus Standard Percutaneous Transluminal Angioplasty to Reduce Restenosis in Patients With In-stent Stenoses in the Superficial Femoral and Proximal Popliteal Artery

Cassese et al, Eurointervention 2017

DCB in ISR

Target lesion revascularisation									
<u>1</u>	DCB angioplasty Plain balloon angioplasty				1.	Random-effects odds ratio			
Study	Events	Total	Events	Total	Weight	[95% CI]			
COPACABANA	3	38	16	26	21.3%	0.05 [0.01, 0.22]			
DEBATE ISR	6	44	13	42	26.0%	0.35 [0.12, 1.04]			
FAIR	4	50	19	44	24.5%	0.11 [0.04, 0.37]			
PACUBA I	12	35	19	39	28.1%	0.55 [0.21, 1.40]			
Total	25	167	67	151	100.0%	0.20 [0.07, 0.55]			
Heterogeneity: Tau ^a	² = 0.70; Chi ²	=9.29, df	=3 (P=0.0	3); l² = 689	%				
lest for overall effect	ct: Z=3.12 (H	e=0.002)				0.05 0.2 1 5 20			
						DCB angioplasty Plain balloon angioplasty better better			

Cassese et al, Eurointervention 2017

Ott I et al, ISAR-PEBIS study, J Am Heart Assoc. 2017

No RCT comparing DCB with stents

Primary patency rates and mean lesion lengths may be calculated differently, and therefore may not be directly comparable; chart is for illustration only.

[1] Tepe G, et al. Circ 131:495-502 (2015). Laird JR, et al. JAm Coll Cardiol: 66:2329-38 (2015). Note: 1 year results updated from interval to cumulative KM calculations. PSVR < 2.4 and freedom from CD-TLR. [2] Zeller T, et al. JEVT. (3):359-68 (2014). [3] Micari A, et al. JACC Cardiovasc Interv. 9(9):950-6 (2016). [4] Scheinert D. EuroPCR 2015. [5] Complete SE Instructions for Use. [6] Laird J, et al. Circ Cardiovasc Interv. 3(9):950-6 (2010). [7] Gray W, et al. J Vasc Interv Radiol 26:21-28 (2015). [8] Garcia L, et al. Circ Cardiovasc Interv 8(5): e000937 (2015). [9] Innova Instructions for Use (Boston Scientific) [10] Bosiers M, et al. J Endovasc Ther 16:261-9 (2009). [11] Matsumura J, et al. J Vasc Str3 (2013). [12] Dake M, et al. Circ Cardiovasc Interv 4:495-504 (2011); Dake M, et al. JACC 61(24):2417-27 (2013). [13] Müller-Hülsbeck S, et al. J Endovasc Ther. (2016). [14] Zeller T, et al. JEVT. (3):359-68 (2014). [15] Bosiers M, et a. J Cardiovasc Surg (Torino). 54(1):115-22 (2013). [16] Lammer J, et al. Cardiovasc Intervent Radiol 26:21-28 (2015). [17] G. Ansel. VIBRANT interim results presented at VIVA 2009.

Conclusions

• Large RCTs demonstrate the superiority of 3 DCBs over POBA in de novo SFA lesions regarding primary patency at 1 year

• 2 DCBs have sustained superiority at 2 years and 1 DCB remains superior at 3 years

• There is a lack of evidence for DCBs in other locations, in other indications and against other therapies (BMS, DES)

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE **CONTROVERSIES & UPDATES** IN VASCULAR SURGERY

R A

JANUARY 25-27 2018 **MARRIOTT RIVE GAUCHE & CONFERENCE CENTER** WWW.CACVS.ORG PARIS, FRANCE

Hôpitaux Universitaires **Paris Ile-de-France Ouest** POINCARÉ • BERCK ND AMBROISE PARÉ • SAINTE PÉRINE

