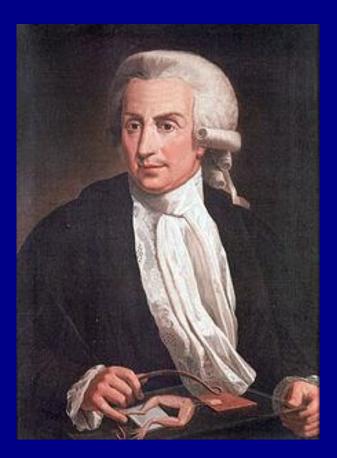
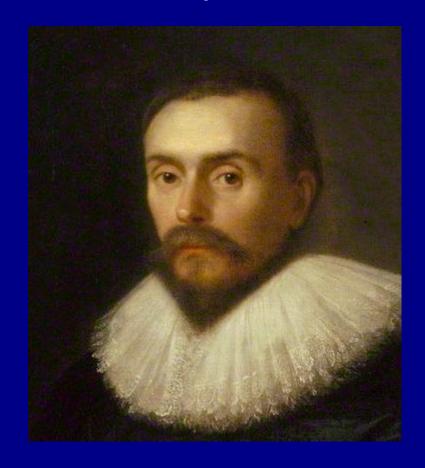
Neuromuscular Electrical Stimulation in Venous Disease

Joseph Shalhoub

Academic Section of Vascular Surgery

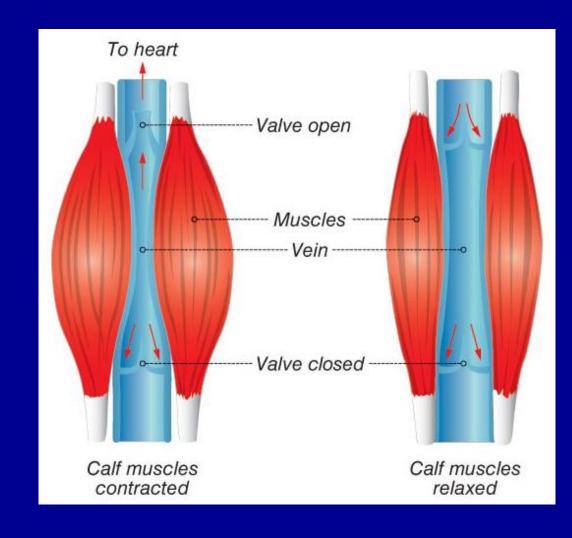
Imperial College London




Disclosure				
Speaker name:				
Joseph Shalhoub				
☑ I have the following potential conflicts of interest to report:				
Consulting				
□ Employment in industry				
☐ Shareholder in a healthcare company				
Owner of a healthcare company				
☑ Other(s):				
Department support for NMES research by NMES companies				
□ I do not have any notential conflict of interest				

Combining Sciences

Luigi Galvani



William Harvey

Venous Disease

- Ambulatory venous hypertension
- ~50% reduction with calf muscle pump activation

Electrical Muscle Stimulators

Direct stimulation of muscle

Indirect stimulation via nerve

Explore

Venous haemodynamic impact of NMES

Potential clinical applications of NMES in venous disease

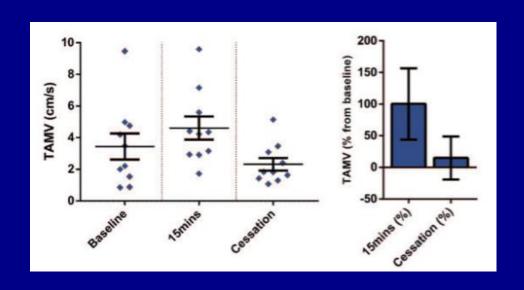
NMES for VTE prevention

Impact on Venous Haemodynamics

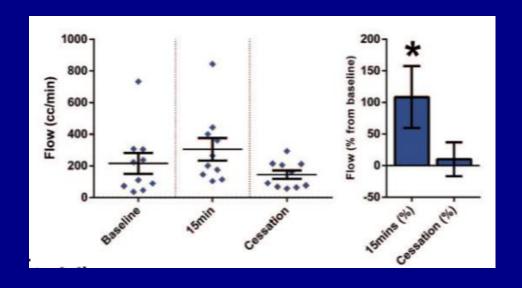
The el electri arteria

Lavanya \ Alun Huv

omuscular 10us and


, Hayley Moore and

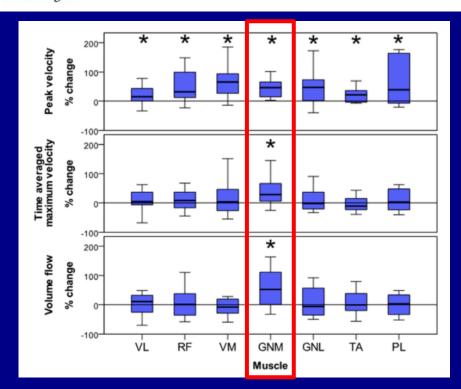
Phlebology
2015, Vol. 30(9) 648–650
© The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0268355514542682
phl.sagepub.com


SSAGE

n=10 healthy subjects

Time averaged mean velocity (cm/s)

Flow (cc/min)

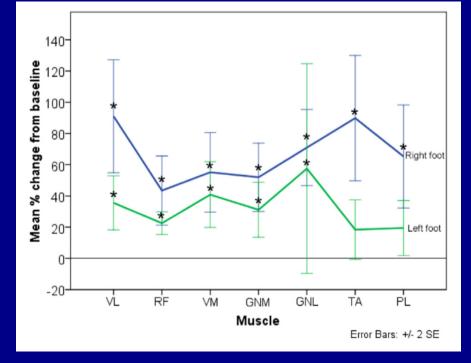

Which Muscle Group to Target?

Journal of Vascular Surgery
Venous and Lymphatic Disorders

The comparative hemodynamic efficacy of lower limb muscles using transcutaneous electrical stimulation

David Rhodri Scourfield Evans, BSc,^a Katherine J. Williams, MBBS, MA (Cantab), MRCS,^b Paul H. Strutton, PhD, BSc,^c and Alun H. Davies, BM BCh, DM (Oxon), FRCS, FHEA,^b Cardiff and London, United Kingdom

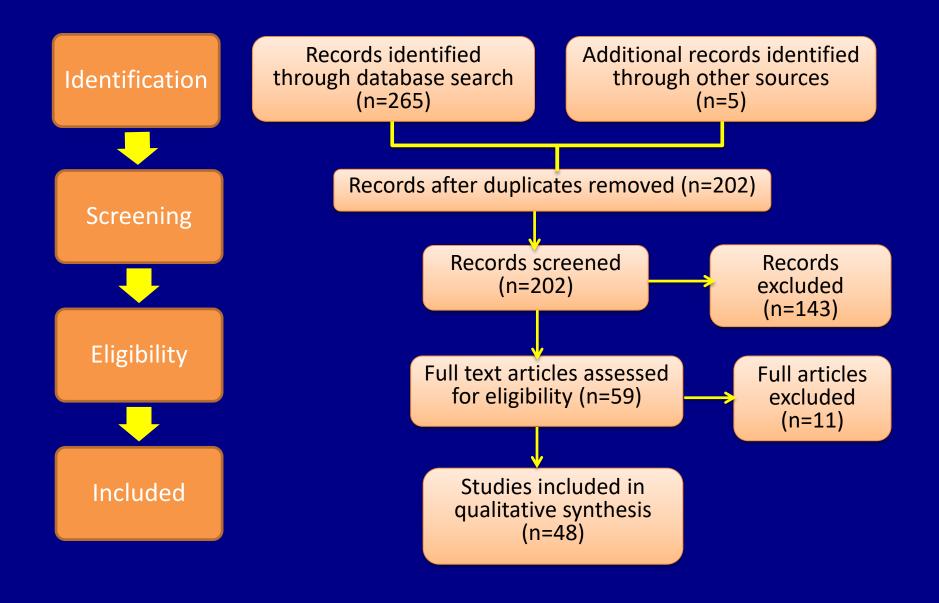
Local vs Systemic Impact?


Journal of Vascular Surgery
Venous and Lymphatic Disorders

Venous and Lymphatic Disorders

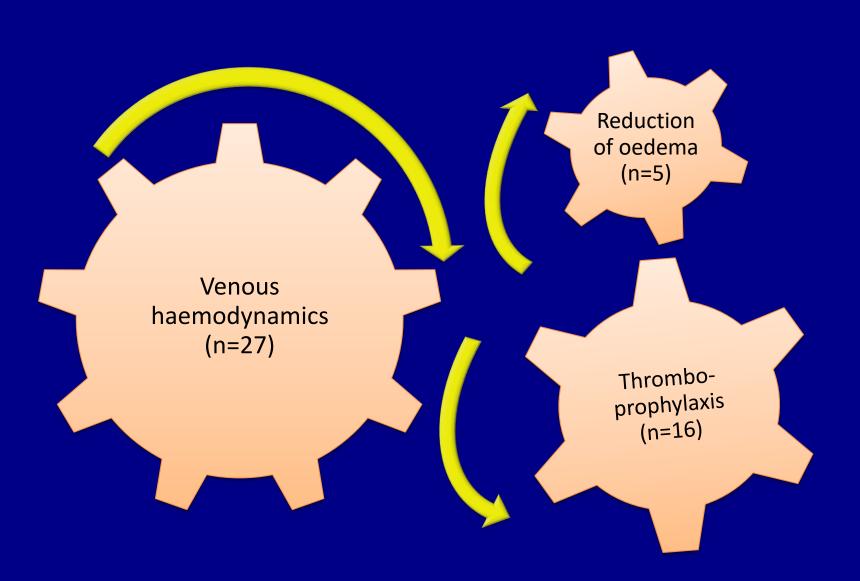
The comparative hemodynamic efficacy of lower limb muscles using transcutaneous electrical stimulation

David Rhodri Scourfield Evans, BSc,^a Katherine J. Williams, MBBS, MA (Cantab), MRCS,^b Paul H. Strutton, PhD, BSc,^c and Alun H. Davies, BM BCh, DM (Oxon), FRCS, FHEA,^b Cardiff and London, United Kingdom

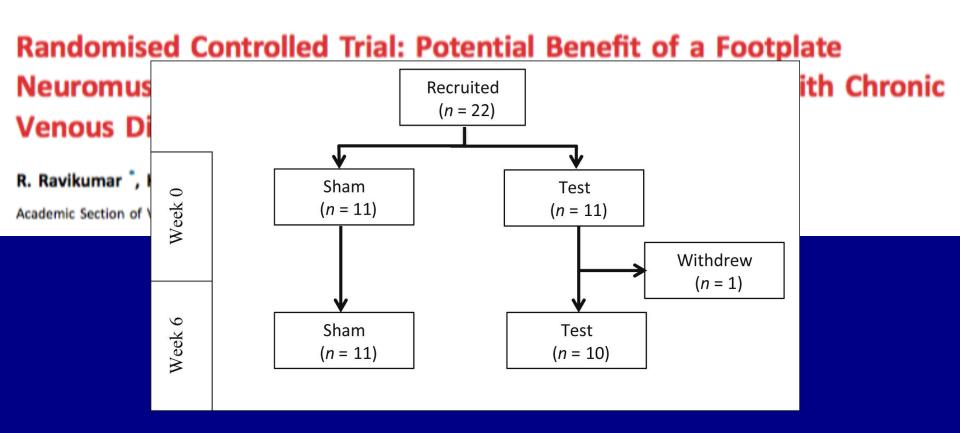

Laser Doppler
Blood Flow

Right Stimulated

Left Unstimulated

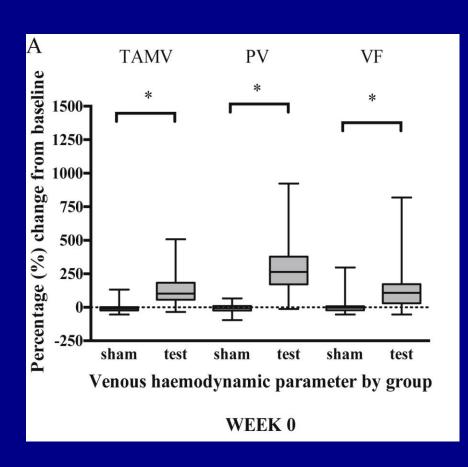

Potential Applications of NMES in Venous Disease

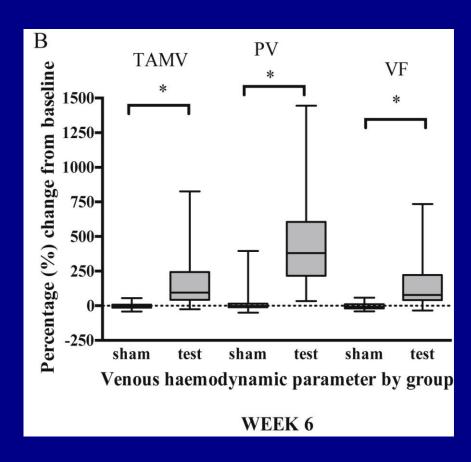
Variation in Electrical Parameters and Outcome Measures


Pulse Waveform	Pulse duration	Frequency	
"galvanic" "trapezoidal"	200 - 350μs	Freq (Hz) = 1 duration 1-250Hz	
Intensity	Electrode placement	Outcome measure	
"miliAmperes" "microCoulombs" "Volts" "to achieve muscle contraction"	Direct - Calf muscle Indirect - Tibial nerve - Common peroneal nerve	Air plethysmography Photoplethysmography Strain gauge plethysmography Venous occlusion plethusmography Venous duplex	

Results of Systematic Review

Plot Clinical Study in CVI


Eur J Vasc Endovasc Surg (2017) 53, 114-121

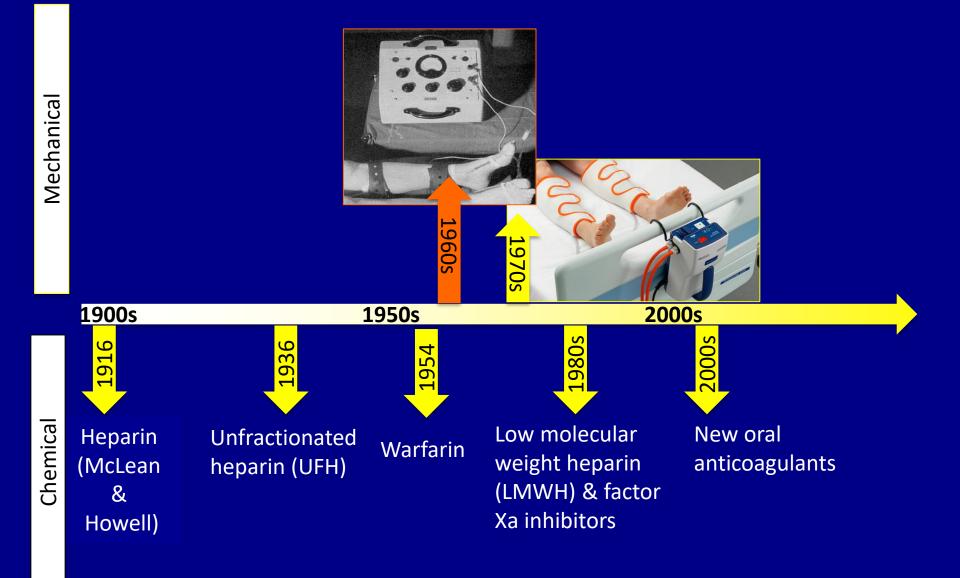


Haemodynamics in Individuals with Venous Disease

Week 0

Week 6

NMES and Limb Volume


Table 2. Limb volume in sham and test group pre- and post-stimulation at week 0 and week 6.

Week	Sham		Test			
	Pre-stimulation, mean \pm SD (mL)	Post-stimulation, mean \pm SD (mL)	p	Pre-stimulation mean \pm SD (mL)	Post-stimulation mean \pm SD (mL)	р
0	5,107 ± 1,252	5,208 ± 1,252	.0001 ^a	5,377 ± 1,122	$5,422 \pm 1,127$.0623
6	$5,143 \pm 1,269$	$5,203 \pm 1,272$.0023ª	$5,500 \pm 1,173$	$5,553 \pm 1,168$.0815

NMES and Quality of Life

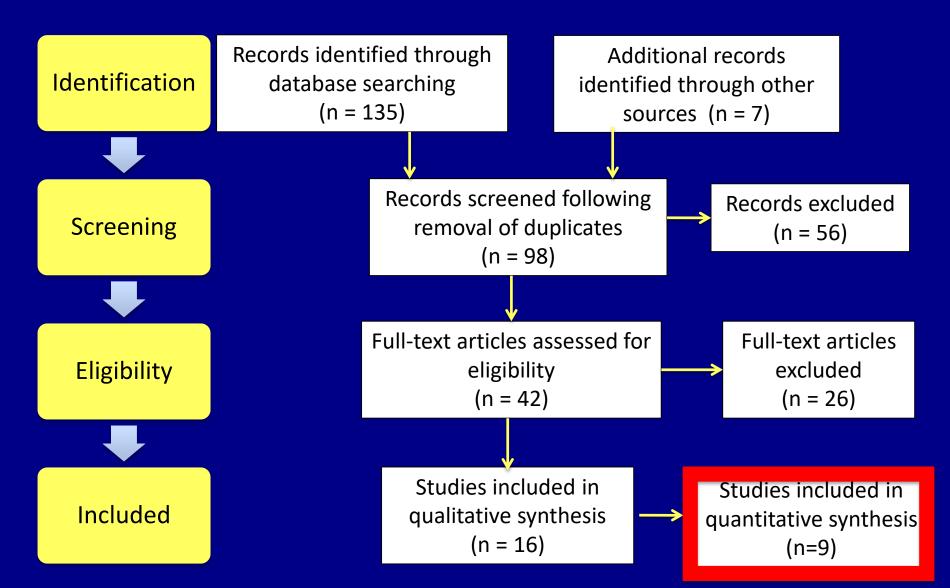
Table 3. Percentage d	ifference (%) in questionnaire scores over	6 weeks in the sham and test group.	
	Sham	Test	Statistical analysis
	Difference in QOL score	Difference in QOL score	p
VCSS	6.4 ± 20.7^{a}	-11.8 ± 31.2^{a}	.127ª
AVVQ	-3.0 (-15.3 to 68.3) ^b	-28.4 (-84.7 to -3.1) ^b	.045 *,b
EQ5D	0.00 (-17.53 to 18.20) ⁶	0.00 (-7.55 to 1.14)	.739°
EQ5D:VAS	-14.3 (-37.5 to 20.0) ^b	-5.0 (-11.5 to 4.2) ^b	.321 ^b
SF-12: PCS	10.9 ± 24.7°	0.6 ± 12.7^{a}	.254°
SF-12: MCS	-10.0 ± 22.5^{a}	9.4 ± 16.3^{a}	.037 ^{**,a}

What about DVT?

NMES and VTE Prevention

Review Article

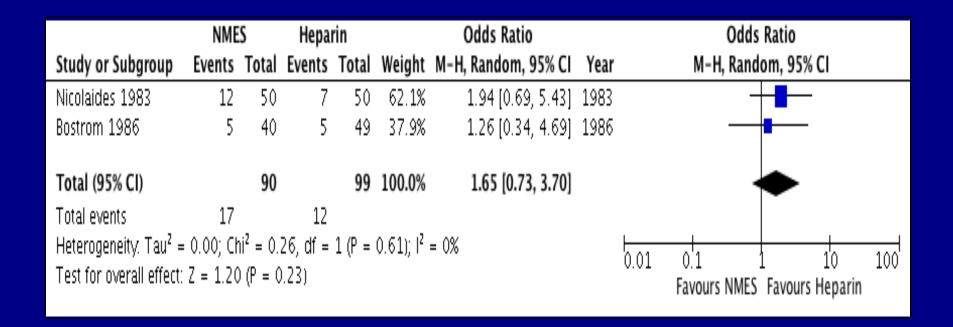
Neuromuscular electrical stimulation for the prevention of venous thromboembolism


Raveena Ravikumar, Katherine J Williams, Adarsh Babber, Hayley M Moore, Tristan RA Lane, Joseph Shalhoub and Alun H Davies

Phlebology

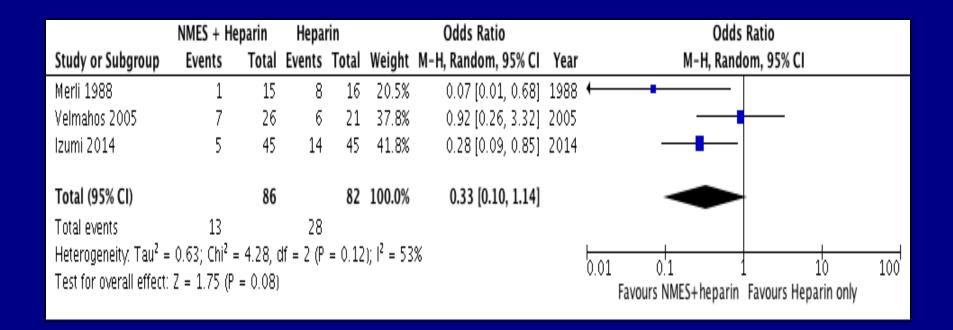
Phlebology
0(0) 1–12
© The Author(s) 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0268355517710130
journals.sagepub.com/home/phl

NMES and VTE Prevention



DVT NMES vs Control

	NME	S	Conti	rol	Odds Ratio			Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Nicolaides 1972	1	60	25	112	15.7%	0.06 [0.01, 0.45]	1972	-
Becker 1973	2	39	11	35	20.6%	0.12 [0.02, 0.58]	1973	
Rosenberg 1975	22	73	50	121	36.6%	0.61 [0.33, 1.14]	1975	
Lindstrom 1982	5	37	12	40	27.2%	0.36 [0.11, 1.16]	1982	-
Total (95% CI)		209		308	100.0%	0.26 [0.10, 0.72]		•
Total events	30		98					
Heterogeneity: $Tau^2 = 0.63$; $Chi^2 = 8.04$, $df = 3$ (P = 0.05); $I^2 = 63\%$ Test for overall effect: Z = 2.60 (P = 0.009)							0.01 0.1 1 10 100 Favours NMES Favours Control	


Favours NMES (p=0.009)

DVI NMES vs Unfractionated Heparin

No significant difference (p=0.23)

DVT NMES+Heparin vs Heparin

No significant difference (p=0.08)

NMES and Pulmonary Embolism Prevention

us thrombosis (DVT) omboses usually form s (3). Venous pooling oagulation properties onsible for the high

ginally recommended chanical methods that nous pooling (4). The ency of postoperative ot of such prophylaxis sm (PE) has not been

rried considerably. In mulation with groups

(dextran 40). Furthermore, the correlation between the incidence of thromboembolic complications after general surgery and the preoperative values for AT III, FPA, βTg , plasminogen and the ability of vein walls to release fibrinolytic activity on venous stasis was to be examined.

Patients and methods

Study groups

One hundred and twelve patients (45 women and 67 men), who were to be subjected to major abdominal surgery, took part in the study. All patients were above 40 years of age or had malignant disease. The composition of the study groups is shown in *Table 1*. The study was randomized and planned to be balanced. The patients were put in one of the following three

NMES 6/37
No thromboprophylaxis
14/40
ARR 18%

Electrical calf muscle stimulation with Veinoplus device in postoperative venous thromboembolism prevention

K. LOBASTOV, V. BARINOV, L. LABERKO, V. OBOLENSKY, V. BOYARINTSEV, G. RODOMAN

Department of general Surgery and Radiology, Russian National Research Medical University named after N.I. Pirogov, Moscow, Russian Federation NMES 2/40 Control 0/40 ARR 5%

- Old studies
- Inadequate control arms

Impact on Clinical Practice

CVI patients

- Other therapeutic avenues exhausted
 - Cannot tolerate compression?

Thromboprophylaxis

- Supplement pharmacoprophlaxis
 - Where other VTE prophylaxis CI

Potential clinical applications of NMES

Neuromuscular Electrical Stimulation in Venous Disease

Joseph Shalhoub
Academic Section of Vascular Surgery
Imperial College London

Thank you

Acknowledgements
Professor Alun H Davies
Raveena Ravikumar
Katherine Williams

