

Effectiveness of surgical banding for high flow in brachial arterybased hemodialysis vascular access

Jan Tordoir, Maastricht

Disclosure

Speaker name:

...Jan HM Tordoir.....

□ I have the following potential conflicts of interest to report:

Consulting

- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company

□ Other(s)

I do not have any potential conflict of interest

Indications for high flow access (HFA) treatment

- Hemodialysis access-induced distal ischemia (HAIDI) pain; coldness; discolorisation; ulcers
- HD patients presenting with cardiac failure

orthopneu; tachypneu; tachycardia

Asymptomatic patients with persistent HFA

usually brachial-based AVF with flow>2 L/min

Vascular access-clinical practice guidelines Strategy for high flow access

Торіс	KDOQI (2006)	EBPG (2007)	ESVS (2018)
	High flow-induced steal syndrome	Guideline 9.2.	Recommendation 71
	requires a decrease in AVF flow	Enhancement of arterial inflow, access	Symptomatic access-induced extremity
	volume.	flow reduction and/or distal	ischaemia in patients with high flow
		revascularization procedures are the	access should be treated by surgical
	Banding procedures of the	therapeutic options for patients with	procedures aimed to reduce access
	postanastomotic vein segment using	<u>ischaemia</u> .	flow.
	different techniques as practiced in		
Interventior	n for the past were not as successful as	When the above methods fail, access	
high flow access	cess expected.	ligation should be considered	
		(Evidence level II).	
	It is more beneficial to decrease the		
	diameter of the anastomosis or create		
	a new AV anastomosis distally. The		
	success of the procedure after surgery		
	should be evaluated by using access		
	flow measurements.		

Strategy for high flow access

Surgical flow reduction procedures

Brachial artery-based AVF

Radial artery-based AVF

Preoperative workup for HFA treatment

- Adequate pharmaceutic bloodpressure regulation
- Arterial inflow & distal forearm angiography (HAIDI indication)
- Complete upper extremity vessel assessment with ultrasound
- Either ultrasound or Transonic flow measurement
- Saphenous vein mapping
- Echocardiography (cardiac failure indication)

Standard surgical banding technique

- Locoregional anesthesia
- Intra-operative flow measurement

• Digital pressure measurement

Standard surgical banding technique

- 5 mm mersilene suture
- Fixation with large clips
- Access flow 600-800 ml/min
- Digital pressure > 60 mm Hg

Flow reduction by surgical banding

Patient demographics (N=50)

Gender: male/ female	30/20
Mean age (years)	51 ± 2
Diabetes Mellitus (%)	3 (6)
PAOD (%)	6 (12)
Hypertension (%)	28 (56)
Time to banding (months)	30 ± 6
AVF (BCAVF/BBAVF/RCAVF)	28/20/2
Mean preop access flow (ml/min)	3070 ± 95

Long-term results surgical banding technique for HFA

J Vasc Surg. 2015 Mar;61(3):762

Effectiveness of surgical banding

Author	Yr	Pt	100% success	50%	0%	Intraoperative Control tool	Occlusion <3 mo (n)	FU (mean, mo)
Tellis (11)	1979	1	0	0	1	blind	1	-
Wytrzes (16)	1987	2	0	2	0	blind	0	4
Dally (17)	1987	1	0	1	0	blind	0	8
Wahl (18)	1997	2	1	0	1	blind	0	-
Sessa (19)	2000	1	0	0	1	blind	1	-
Valentine (20)	2002	1	0	0	1	blind	1	-
Mwipatayi (21)								-
Nazzal (22)	No in	tra	onor	ativ		o a cura	montl	-
Chia (23)			oper	duv	E II	leasurei	nent:	-
Seror (24)	4000		•			, mina		-
Haimov (25)	1975	2	2	0	0	blind	0	12
Haimov (26)	1996	4	0	1	3	blind	3	-
Odland (14)	1991	16	10	6	0	PPG	6	6
Stierli (27)	1998	6	5	0	1	PPG	3	2
DeCaprio (4)	1997	11	10	0	1	PPG	9	-
Mattson (28)	1987	2	2	0	0	PPG	0	-
Subtotal I		55	33	10	12		26	
			60%				47%	

Effectiveness of surgical banding

Author	Yr	Pt	100% success	50%	0%	Intraoperative Control tool	Occlusion <3 mo (n)	FU (mean, mo)
Zanow (29)	2006	78	67	11	1	Flow	3	25
DePalma (9)	1973	1	1	0	0	Flow	0	-
Kwun (30)	1979	2	2	0	0	Flow	0	-
Thermann (31)	2007	15	10	0	5	Flow	1	27
Meyer (32)	2002	7	7	0	0	Duplex	0	36
Jain (15)	1992	3	3	0	0	Duplex	0	-
Aschwanden (33)	2003	2	2	0	0	Duplex	0	-
Shemesh (34)	1999	3	3	0	0	Duplex	0	28
Schild (35)	2001	7	7	0	0	Pulsations	0	12
Stary (36)	0000	4	4	0	0	D 1 2	0	
Montoya (3					•			
West (38)	thu	ntr:	anne	rat	Ίνε	measu	rem	phtl
Khalil (39)			a o p c					
Papalois (46,	4001	т	1	v	v	1 uisauoiis/ syiiip	v	т
Ozisik (41)	2003	6	6	0	0	Puls/thrill/Duplex	0	6
Stanicia (42)	1997	1	1	0	0	Symptomatology	0	12
Goel (43)	2006	16	15	1	0	Sympt/Angio	0	3
Halevy (44)	1991	5	5	0	0	Pulse oximetry	0	-
Pomper (45)	2000	2	2	0	0	Pulse oximetry	0	17
Rivers (5)	1992	5	4	1	0	PVR	0	4
Ebeid (12)	1981	1	1	0	0	Doppler rad art	0	-
Porcellini (46)	1997	1	1	0	0	Doppler rad art	0	35
White (47)	1999	1	1	0	0	Doppler rad art	0	9
Subtotal II		171	152	13	6		4	
			89%				2%	

Effectiveness of banding for HFA-associated cardiac failure

Au thor	Year	No. of patients	Age (mean, SD)	Access location	Months on dialysis	Flow pre- operative (mean, SD)	Flow post- operative (mean, SD)	Intra- operative 'flow tool'	Cardiac symptoms	Follow up (mo)	Complications
De Palma (78)	1973	1	60	Leg	NR	2.5	0.6	Yes	Improved	NR	-
Anderson(79)	1975	3	48	Wrist	36	2.1	0.6	Yes	Improved	8	-
Isoda (80)	1994	1	49	Wrist AVF	24	3.7	1.4	Yes	Improved	42	-
Tzanikis (81)	1999	1	48	Wrist AVF	NR	1.6	0.5	Blind	Improved	6	-
Murray (53)	2004	1	55	Elbow AVF	52	5.2	3.0	Yes	Improved	12	-
Bednarek (82)	2004	1		Elbow AVF	NR	4.0	0.9	NR	Improved	NR	÷
Zanow (48)	2006	17	59 ± 3	Elbow + wrist AVF	72% > 12	2.1 ± 0.46	0.5 ± 0.7	Yes	96% Improved	6-37	12 % relapse/ reoperation
Schneider (83)	2006	20	62 ± 3	Elbow + wrist AVF	NR	2.0 ± 0.5	± 0.2	Blind	95% Improved	1-3	20% occlusion/ hematoma
Tellioglu (65)	2008	18	48 ± 9	Elbow AVF	NR	2.7	0.7	Yes	100% improved	12	-
Van Hoek (1)	2009	9	51 ± 8 (SEM)		87 ±	3.2 ± 0.3 (SEM)	1.2 ± 0.1 (SEM)	Yes	NR	30	11% relapse/ reoperation
Total			72				95-10)0%	imnr	oven	ient

Minimal invasive banding technique (MILLER)

Effectiveness of surgical banding Summary studies for ischemia

Study (ref)	Number	Pre-operative classification	Technique	Symptomatic response (%)	Early throm- bosis (%)
Wang 2016 (59)	30	Yes (SVS mean = 2.8)	Banding	79.1	4.1
Leake 2014 (53)	37	Yes	Banding	75	11
Wang 2013 (55)	7	No	Banding	100	0
Smith 2013 (54)	6	No	Banding	100	0
Gupta 2011 (46)	21	No	Banding	52.4	19
Shemesh 2010 (56)	7	No	Banding	100	0
Miller 2010 (52)	114	Non standard	Banding	88.6	4.4
Van Hoek 2009 (57)	9	Steal questionnaire	Banding	100	0
Thermann 2007 (58)	15	SVS classification I-III (75% mild steal)	Banding	66.7	0
Schneider 2006 (60)	6	No	Banding	83.3	0
Goel 2006 (61)	16	No	Banding	100	0
Morsy 1998 (62)	6	Yes	Banding	100	66.7
DeCaprio 1997 (63)	11	No	Banding	90.9	81.8

Effectiveness of surgical banding for high flow in brachial artery-based hemodialysis vascular access

Summary

- Major indication for banding is access-induced ischaemia
- Peroperative flowmeasurement ± digital pressure measurement (HAIDI) are mandatory for an optimal result
- Locoregional anesthesia is indicated to establish stable peroperative bloodpressures
- Long-term outcome best with an initial low flow after operation
- 90-100% success rate in access-induced heartfailure patients
- Little information on the outcome of alternative banding techniques (MILLER)

