CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

FEBRUARY 7-9 2019 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Treatment of access-related distal ischemia: DRIL

Miltos Lazarides

Disclosure

Speaker name:	Miltos	Lazarides
---------------	--------	-----------

- I have the following potential conflicts of interest to report:
- Consulting
- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- Other(s)
 - I do not have any potential conflict of interest

Causes of ARDI: 1 inflow lesion 2 discordant vascular resistance

Steal severity classification

Stage*	Symptoms/signs	Management
I	Pale and/or cool hand without pain	Conservative
II	Pain during exercise and/or during dialysis	Mostly conservative
Ш	Rest pain or loss of motor function	Urgent surgical intervention
IV	Tissue loss (ulcers/gangrene)	Urgent surgical intervention

*Tordoir et al, Eur J Vasc Surg 2004

Steal severity classification

Stage*	Symptoms/signs	Management
I	Pale and/or cool hand without pain	Conservative
II	Pain during exercise and/or during dialysis	Mostly conservative
Ш	Rest pain or loss of motor function	Urgent surgical intervention
IV	Tissue loss (ulcers/gangrene)	Urgent surgical intervention

*Tordoir et al, Eur J Vasc Surg 2004

Stage IV

FEBRUARY7-92019MARRIOTT RIVE GAUCHE & CONFERENCE CENTERPARIS, FRANCEWWW.CACVS.ORG

Distal Revascularization Interval Ligation

Treatment of ischemia due to "steal" by arteriovenous fistula with distal artery ligation and revascularization

Harry Schanzer, M.D., Myron Schwartz, M.D., Elizabeth Harrington, M.D., and Moshe Haimov, M.D., New York, N.Y.

WWW.CACVS.ORG

FEBRUARY 7-9 2019

PARIS, FRANCE

J Vasc Surg, 1988

Sink region

Field M et al, Ann Royal Coll Sur Engl, 2009

Success rate of various techniques

Management technique	Number of patients who were managed with the technique	Patients available for follow-up	Success rate (95% confidence interval)
Ligation	27	25	0% (N/A)
Banding	22	21	38% (17%-59%)
Distal revascularization and interval ligation	21	20	80% (62%-98%) ^a
Improve inflow	9	7	43% (N/A)
Revision using distal inflow	4	3	100% (N/A)
Proximalization using arterial inflow	3	3	100% (N/A)
Distal revascularization	1	1	100% (N/A)

^aStatistically significant at $P \leq .05$.

Gupta N, J Vasc Surg, 2011

Comparison of DRIL vs. other procedures

Procedure (No.)	Access preserved, %	Improvements of steal symptoms, %	30-day complications, %	Continued steal, %
Ligation (61)	0	93	8.2	0
DRIL (56)	100	98	7.1	0
RUDI (19)	95	89	37	5.6
Banding (37)	89	75	47	33
PAI (9)	100	100	44	22
DRAL (13)	100	100	0	0
Total (216)	64	90	19	6.9

DRAL, Distal radial artery ligation; DRIL, distal revascularization with interval ligation; PAI, proximalization of arterial inflow; RUDI, revision using distal inflow.

Leake AE, J Vasc Surg 2015

Comparison of DRIL vs. RUDI

Misskey J, J Vasc Surg 2016

Meta-analysis of the existing DRIL series

- Inclusion criteria: DRIL series with ≥3 cases
- Search was performed following PRISMA guidelines
- 23 series were found including a total of 694 cases
- The Comprehensive Meta-Analysis (CMA) software was used (Biostat [®] USA)

DRIL: prevalence of diabetics(N=509)

DRIL: initial type of access (N=516)

DRIL: indication (N=502)

Stage II & prophylactic
Stage III & IV

DRIL: the preferred conduit (n=628)

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY

FEBRUARY 7-9 2019 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE WWW.CACVS.ORG

Failure to improve following DRIL

Model	Study name	Time point	Events/Tot al	Statistics for each study			Weight (Fixed)	Event rate and 95% CI				
			Total	Event rate	Lower limit	Upper limit	Relative weight	-1.00	-0.50	0.00	0.50	1.00
	Schanzer	1992.	0/14	0.03	0.00	0.37	0.64			+	·	
	Haimov	1996.	0/23	0.02	0.00	0.26	0.65					
	Katz	1996.	1/6	0.17	0.02	0.63	1.10				+	
	Berman	1997.	0/21	0.02	0.00	0.28	0.64					
	Stierli	1998.	0/6	0.07	0.00	0.58	0.61				+	
	Knox	2002.	5 / 55	0.09	0.04	0.20	5.99			+		
	Diehl	2003.	0/14	0.03	0.00	0.37	0.64			+	·	
	Korzets	2003.	0/9	0.05	0.00	0.47	0.63			+	-1	
	Lazarides	2003.	0/23	0.02	0.00	0.26	0.65					
	Sessa	2004.	0/18	0.03	0.00	0.31	0.64					
	Illig	2005.	1/9	0.11	0.02	0.50	1.17			_ +	_	
	Mwipatayi	2006.	2/12	0.17	0.04	0.48	2.20				-1	
	Walz	2007.	13/38	0.34	0.21	0.50	11.28				-	
	Huber	2008.	14/64	0.22	0.13	0.34	14.42					
	Yu	2008.	1/24	0.04	0.01	0.24	1.26					
	Field	2009.	0/6	0.07	0.00	0.58	0.61			+	+	
	Gupta.	2011.	0/21	0.02	0.00	0.28	0.64					
	Anaya-Ayal	2012.	8/33	0.24	0.13	0.42	7.99				-	
	Aimag	2013.	15/81	0.19	0.11	0.28	16.12			+		
	Scali	2013.	24 / 134	0.18	0.12	0.25	25.98			+		
	Kopriva	2014.	0/3	0.13	0.01	0.73	0.58			+	+	
	Leake.	2015.	1/59	0.02	0.00	0.11	1.30			⊢		
	Misskey	2016.	4 / 21	0,19	0.07	0.41	4.27				-	
Fixed				0.17	0.14	0.21				+		

1-year access failure following DRIL

Model	Study	Time	Statistics	Events/Tot	Statistics fo	or each study		Event rate and 95% Cl					Weight (Fixed)		
			Event rate	Total	Lower	Upper limit	-1.	00 -0.	.50	0.00	0.50 1	.00	Relative weight		
	Schanzer	1992.	0.14	2/14	0.04	0.43					-		2.09		
	Haimov	1996.	0.26	6/23	0.12	0.47					-		5.40		
	Katz	1996.	0.07	0/6	0.00	0.58					+		0.56		
	Berman	1997.	0.05	1/21	0.01	0.27				└──			1.16		
	Knox	2002.	0.16	9/55	0.09	0.29							9.16		
	Lazarides	2003.	0.30	7/23	0.15	0.52							5.92		
	Diehl	2003.	0.21	3/14	0.07	0.49					-		2.87		
	Korzets	2003.	0.11	1/9	0.02	0.50							1.08		
	Sessa	2004.	0.03	0/18	0.00	0.31							0.59		
	Walz	2007.	0.45	17/38	0.30	0.61				-	+-		11.43		
	Huber	2008.	0.30	19/64	0.20	0.42					-		16.25		
	Yu	2008.	0.13	3/24	0.04	0.32				 			3.19		
	Anaya-Ayal	2012.	0.06	2/33	0.02	0.21				+			2.29		
	Scali	2013.	0.15	20/134	0.10	0.22				+			20.70		
	Aimaq	2013.	0.20	16/81	0.12	0.30							15.62		
	Kopri∨a	2014.	0.13	0/3	0.01	0.73					<u> </u>		0.53		
	Misskey	2016.	0.05	1/21	0.01	0.27				÷			1.16		
ixed			0.21		0.17	0.25				+					

l²=55%

1-year arterial-arterial bypass failure

			-									
Model	Study name	Time point	Events/Tot al	Statistics for each study	Statistics for each study		Weight (Fixed)	Event rate and 95% CI				
			Total	Event rate	Lower limit	Upper limit	Relative weight	-1.00	-0.50	0.00	0.50	1.00
	Schanzer	1992.	0/14	0.03	0.00	0.37	1.12			+	-	
	Haimov	1996.	1/23	0.04	0.01	0.25	2.22					
	Katz	1996.	0/6	0.07	0.00	0.58	1.08			+	<u> </u>	
	Berman	1997.	0/21	0.02	0.00	0.28	1.13				.	
	Knox	2002.	8/55	0.15	0.07	0.26	15.84					
	Diehl	2003.	0/14	0.03	0.00	0.37	1.12			+	-	
	Lazarides	2003.	2/23	0.09	0.02	0.29	4.23			+	·	
	Sessa	2004.	1/18	0.06	0.01	0.31	2.19			+	.	
	Illig	2005.	1/9	0.11	0.02	0.50	2.06			- -	_	
	Walz	2007.	19/38	0.50	0.35	0.65	22.02				—	
	Huber	2008.	12/64	0.19	0.11	0.30	22.60				-	
	Yu	2008.	1/24	0.04	0.01	0.24	2.22			<u>⊢</u>		
	Anaya-Ayal	2012.	2/33	0.06	0.02	0.21	4.35			+		
	Aimaq	2013.	2/81	0.02	0.01	0.09	4.52			⊢		
	Scali	2013.	5/134	0.04	0.02	0.09	11.16			+		
	Kopriva	2014.	0/3	0.13	0.01	0.73	1.01			_ -+		.
	Misskey	2016.	0/21	0.02	0.00	0.28	1.13			<u>⊢</u>		
Fixed				0.14	0.11	0.18				+		

ESVS access guidelines 2018

Recommendation 72		
Distal revascularisation and interval ligation should be	lla	С
considered in patients with vascular access induced limb		
ischaemia and upper arm access without high flow.		

Access related distal ischemia following proximal AVFs or AVGs

