
EUROVALVE DEBATING **CHAMBER** Ш Π n Π Π Ш

CAMBRIDGE UNION SOCIETY OCTOBER 7&8,2022

COURSE DIRECTORS

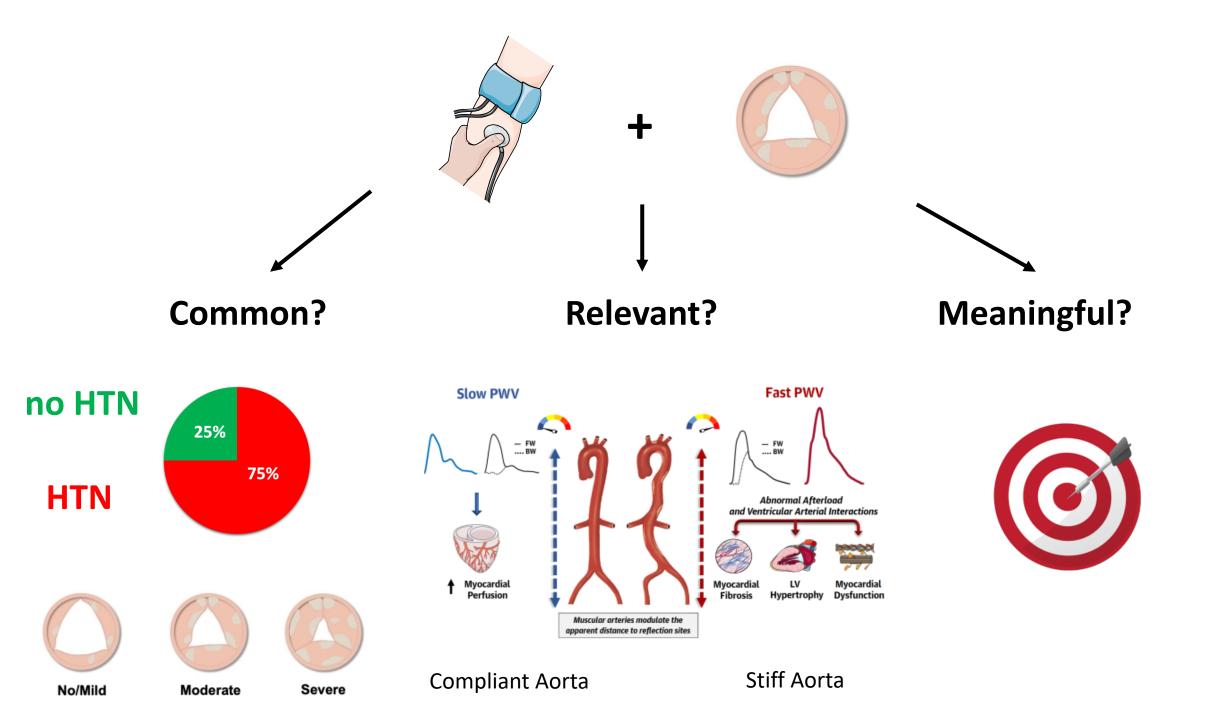
Patrizio Lancellotti, Belgium Khalil Fattouch, Italy Gilbert Habib, France José Luis Zamorano, Spain Philippe Pibarot, Canada Mani Vannan, USA Jeroen Bax, The Netherlands

LOCAL HOST Madalina Garbi, United Kingdom

That this House believes HFpEF should be prevented by treating coexistent systemic hypertension, not early AVR

- Opposition Team -

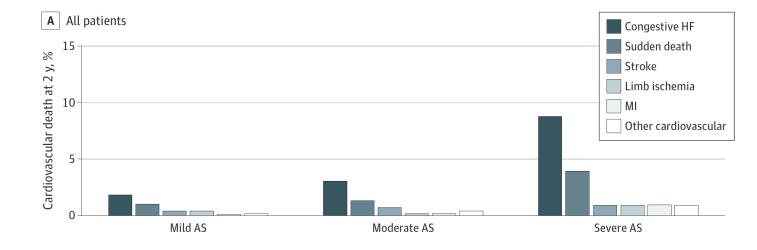
Speaker: Augustin Coisne Expert Panel : Erwan Donal, Mai-Linh Nguyen


FACULTY DISCLOSURE

I disclose the following financial relationships: Receiving grant/research support from Abbot Vascular, GE Healthcare Paid speaker for Abbot Vascular, GE Healthcare

« Opposition is true friendship »

William Blake (1757-1827)

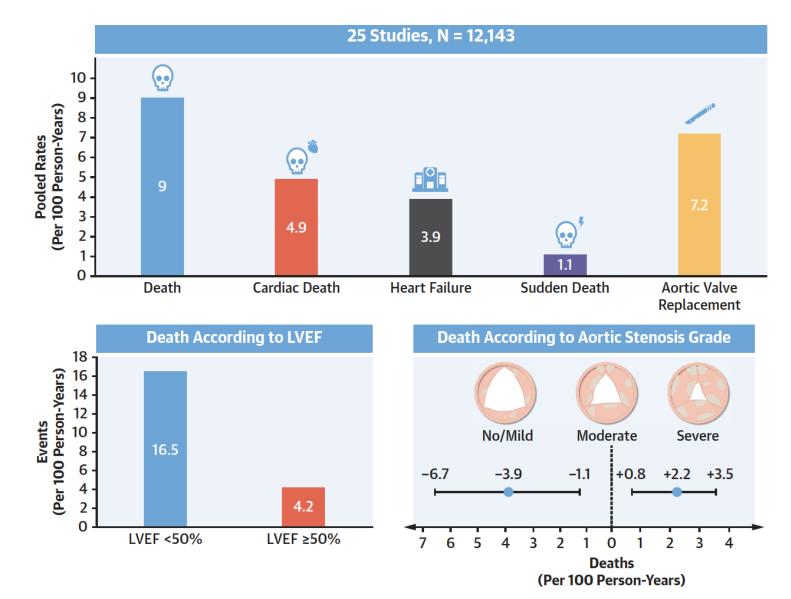

5.3 Medical therapy

No medical therapies influence the natural history of aortic stenosis. Statins (which demonstrated favourable effects in pre-clinical studies) do not affect disease progression²⁴⁶ and clinical trials targeting calcium metabolic pathways are ongoing. Patients with heart failure who are unsuitable (or waiting) for SAVR or TAVI should be medically treated according to ESC heart failure Guidelines.²⁴⁷ ACEI are safe in aortic stenosis (provided that BP is monitored carefully) and may have beneficial myocardial effects before the onset of symptoms, and after TAVI and SAVR.^{248–250} Coexisting hypertension should be treated to avoid additional afterload, although medication (particularly vasodilators) should be titrated to avoid symptomatic hypotension.

VALVENOR registry

50 Severe AS All-cause mortality, % 0 0 0 0 0 10 Moderate AS Mild AS Age- and sex-matched general population 2 0 1 3 Follow-up, y No. at risk Mild 1154 1063 815 203 Moderate 1122 930 620 117 427 189 114 23 Severe

A All-cause mortality



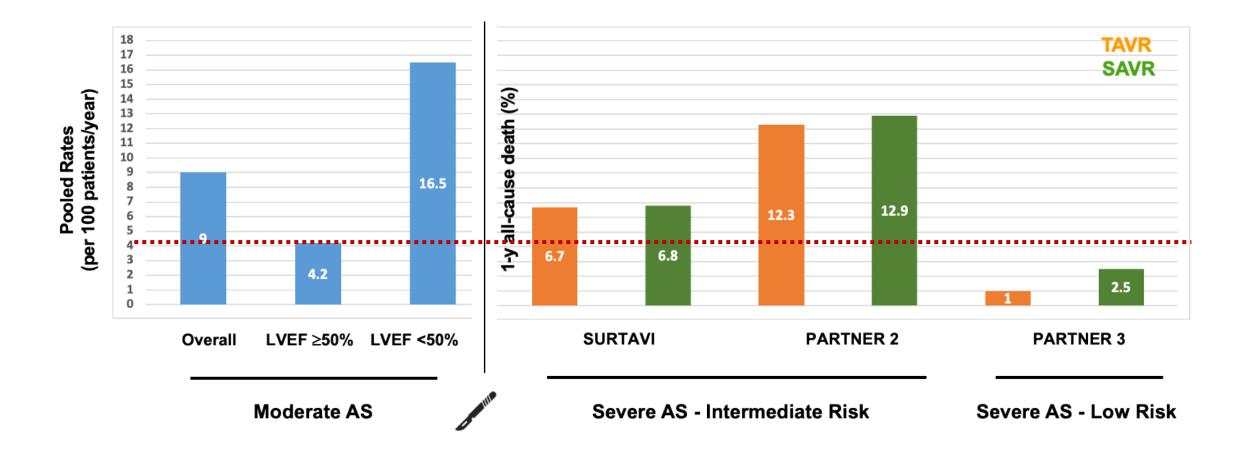
Adjusted for age, sex, diabetes, **history of hypertension**, previous myocardial infarction, previous coronary bypass, previous percutaneous coronary intervention, atrial fibrillation, previous hospitalization for heart failure, prior stroke, left ventricular ejection, and type of cardiology practice.

In a contemporary real-life population, already treated for HTN, moderate AS still associated with an increased risk of myocardial-related death

Coisne et al. JAMA Cardiol. 2021 Dec 1;6(12):1424-1431.

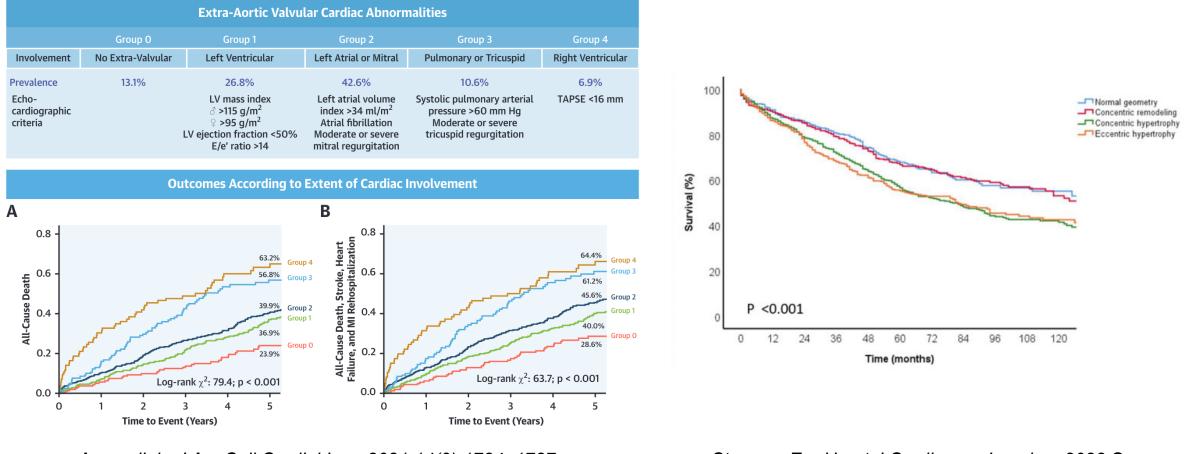
Clinical Outcomes of Patient with Moderate AS

Coisne et al. J Am Coll Cardiol Intv. 2022;15(16):1664-


Clinical Outcomes of Patient with Moderate AS

Covariate	β	Standard Error	Lower bound	Upper bound	p value
Year of publication	-0.006	0.014	-0.034	0.023	0.684
Age	0.039	0.034	-0.030	0.109	0.253
BMI	-0.167	0.108	-0.422	0.087	0.164
Sex (female)	-0.005	0.009	-0.024	0.014	0.601
Hypertension	-0.001	0.023	-0.050	0.048	0.967
Diabetes	0.039	0.015	0.007	0.071	0.019
Atrial Fibrillation	0.026	0.019	-0.015	0.067	0.194
Coronary Artery Disease	0.026	0.009	0.006	0.046	0.017
Stroke	0.005	0.024	-0.049	0.059	0.841
Chronic Obstructive Pulmonary Disease	0.024	0.034	-0.058	0.105	0.517
NYHA class III/IV	0.038	0.010	0.015	0.061	0.004
Symptoms	0.017	0.004	0.009	0.025	<0.001
Aortic Valve Area	-0.111	1.349	-2.958	2.736	0.935
Mean Aortic Gradient	-0.025	0.029	-0.086	0.037	0.408
LV Ejection Fraction	-0.049	0.017	-0.085	-0.014	0.009

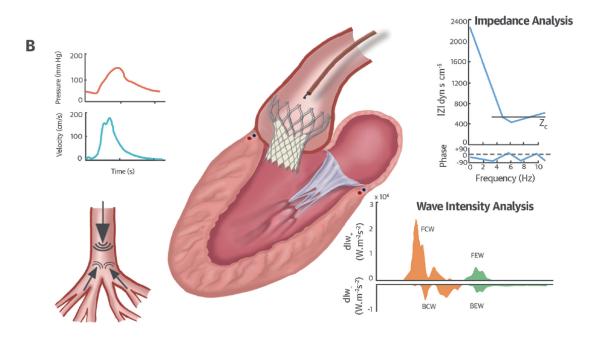
Hypertension was not associated with a significant impact on the overall estimate of all-cause death


Meta-regression analysis of all-cause mortality

Clinical Outcomes of Patient with Moderate AS

The benefit of treating earlier moderate AS is currently under investigations in several trials

Moderate AS and myocardial disease



Amanullah. J Am Coll Cardiol Img. 2021;14(9):1724–1737.

Stassen. Eur Heart J Cardiovasc Imaging. 2022 Sep 10;23(10):1326-1335

An "abnormal" myocardium in moderate AS is already associated with poor outcomes

Systemic arterial load: Time to think globally

Factor	Pre-TAVR	Post-TAVR	p Value
Systemic vascular resistance index, dyn•s•cm ⁻⁵ •m ²	1841 ± 562	$\textbf{2689} \pm \textbf{1271}$	<0.0001
Arterial compliance, pressure decay method, ml·mm Hg ⁻¹	1.20 ± 0.79	0.72 ± 0.33	0.002
Arterial compliance, area method, ml \cdot mm Hg $^{-1}$	1.18 ± 0.77	0.74 ± 0.36	<0.001
Frequency domain analysis			
Z at fist harmonic frequency, dyn•s•cm ⁻⁵	519 ± 219	$\textbf{763} \pm \textbf{280}$	<0.001
Z at second harmonic frequency, $dyn \cdot s \cdot cm^{-5}$	$\textbf{375} \pm \textbf{208}$	541 ± 262	0.002
Z at third harmonic frequency, dyn \cdot s \cdot cm ⁻⁵	313 ± 244	395 ± 208	0.36
Characteristic impedance, dyn•s•cm ⁻⁵	258 ± 139	$\textbf{326} \pm \textbf{193}$	0.06
Frequency of first Z minimum, Hz	$\textbf{3.9} \pm \textbf{1.5}$	$\textbf{4.6} \pm \textbf{1.1}$	0.6
Arterial elastance, mm Hg∙ml ^{−1}	$\textbf{1.2}\pm\textbf{0.46}$	$\textbf{1.75} \pm \textbf{0.70}$	<0.001
Arterial elastance, resistance method, mm Hg•ml ⁻¹	1.09 ± 0.40	1.63 ± 0.65	<0.001
Augmentation index	392 ± 232	$\textbf{750} \pm \textbf{739}$	0.025
Distance to reflection, m	$\textbf{0.11} \pm \textbf{0.72}$	$\textbf{0.12} \pm \textbf{0.09}$	0.06
Wave intensity analysis			
Wave speed, m·s ⁻¹	$\textbf{3.57} \pm \textbf{2.05}$	$\textbf{4.62} \pm \textbf{2.01}$	0.034
Characteristic impedance, dyn•s•cm ⁻⁵	192 ± 124	247 ± 141	0.05

Stiffer vascular behavior post-intervention = increase invascular load after TAVR

Conclusion

We believe that HFpEF should be prevented by treating earlier AS and coexistent systemic hypertension (like for every patient)

