EUROVALVE DEBATING **CHAMBER** Ш Π n Π Π Ш

CAMBRIDGE UNION SOCIETY OCTOBER 7&8,2022

COURSE DIRECTORS

Patrizio Lancellotti, Belgium Khalil Fattouch, Italy Gilbert Habib, France José Luis Zamorano, Spain Philippe Pibarot, Canada Mani Vannan, USA Jeroen Bax, The Netherlands

LOCAL HOST Madalina Garbi, United Kingdom Debate: "This House believes minimally invasive surgery should be considered for patients with previous sternotomy and patent LIMA, before transcatheter techniques."

> Paul Modi Consultant Cardiac & Mitral Surgeon Liverpool Heart and Chest Hospital

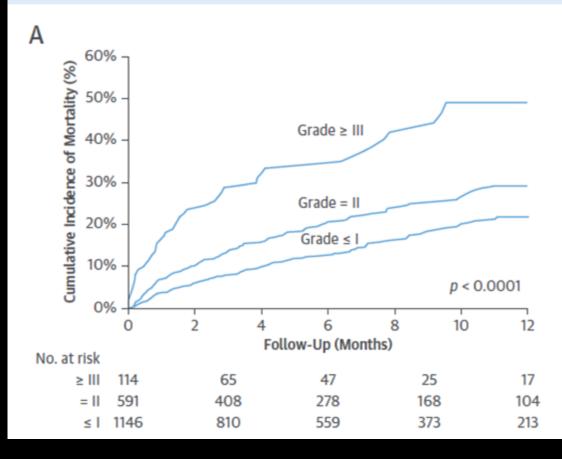
FACULTY DISCLOSURE

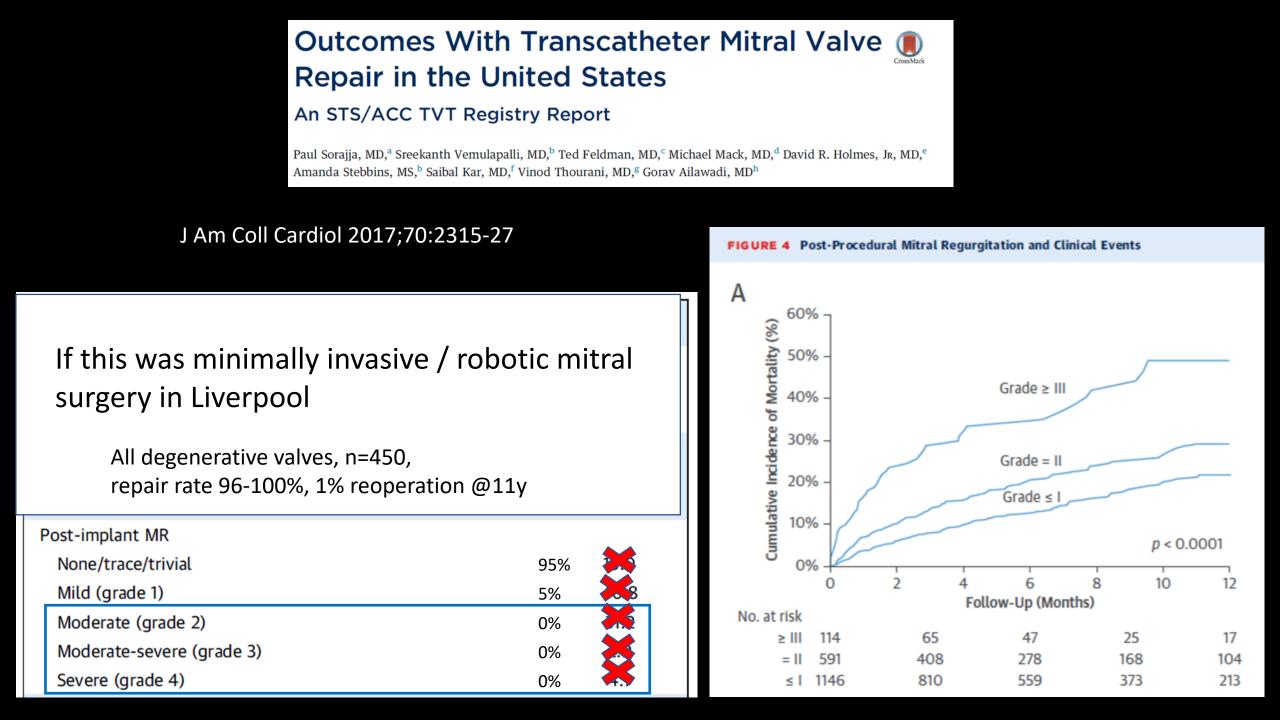
I have no relevant financial relationships to disclose

The results of mitraclip aren't that good *Everest II MitraFR vs COAPT*

The results of minimally invasive surgery are really good

Outcomes With Transcatheter Mitral Valve . Repair in the United States


An STS/ACC TVT Registry Report


Paul Sorajja, MD,^a Sreekanth Vemulapalli, MD,^b Ted Feldman, MD,^c Michael Mack, MD,^d David R. Holmes, J_R, MD,^e Amanda Stebbins, MS,^b Saibal Kar, MD,^f Vinod Thourani, MD,^g Gorav Ailawadi, MD^h

J Am Coll Cardiol 2017;70:2315-27

FIGURE 4 Post-Procedural Mitral Regurgitation and Clinical Events

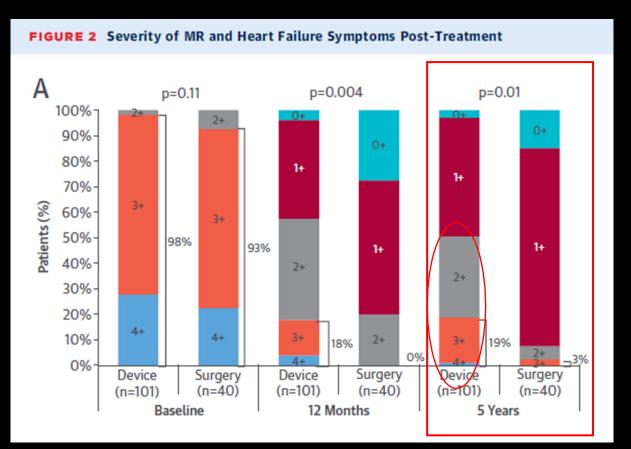
TABLE 3 Procedural and In-Hospital Outcomes ($N = 2,952$)									
Number of clips implanted									
1	66.5								
≥1	34.5								
Site of clip implant									
A2-P2 segments	82.8								
Other	17.2								
Post-implant MR									
None/trace/trivial	15.0								
Mild (grade 1)	46.8								
Moderate (grade 2)	31.2								
Moderate-severe (grade 3) 38% -	2.9								
Severe (grade 4)	4.1								

EVEREST II Trial – 12 months

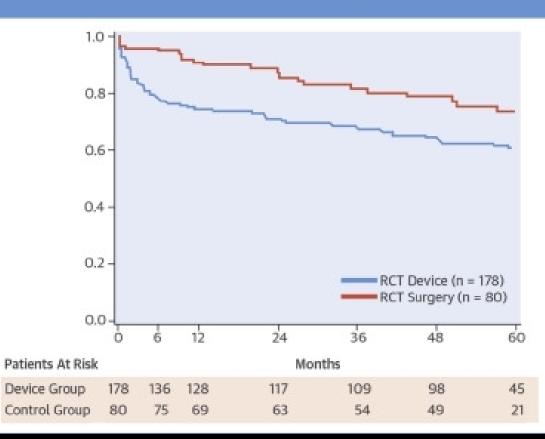
- 279 patients, 2:1 randomisation
- TEER (n=184), surgery (n=95)
- 73% degenerative, 27% functional

Subgroup	Percutaneous Repair	Surgery	Difference between Percutaneou	is Repair and Surgery (%)	P Value fo Interaction
	no. of events/t				
All patients	100/181 (55)	65/89 (73)			
Sex					0.97
Male	63/114 (55)	43/59 (73)			
Female	37/67 (55)	22/30 (73)			
Age					0.009
≥70 yr	52/86 (60)	23/38 (61)			
<70 yr	48/95 (51)	42/51 (82)	•		
MR					
Functional	26/48 (54)	12/24 (50)	•		0.02
Degenerative	74/133 (56)	53/65 (82)			
LVEF					0.06
<60%	35/68 (51)	15/28 (54)			
≥60%	64/111 (58)	50/61 (82)			
			-50 0	50	
			▲	*	
			Surgery Better	Percutaneous Repair Better	

Subgroup analyses for primary end point at 12 months (free from death, mitral valve surgery or 3+/4+ MR)


Table 3. Secondary End Points at 12 Months in the Intention-to-Treat Population.*

End Point	Percutaneous Repair (N=184)				Surgery (I	P Value for Comparison between Study Groups	
	No. of Patients	Value	P Value for Comparison between Baseline and 12 Mo	No. of Patients	Value	P Value for Comparison between Baseline and 12 Mo	2
Change from baseline in left ventricular measurement							
End-diastolic volume — ml	144	-25.3 ± 28.3	<0.001	66	-40.2±35.9	<0.001	0.004
End-diastolic diameter — cm	148	-0.4 ± 0.5	<0.001	67	-0.6±0.6	<0.001	0.04
End-systolic volume — ml	144	-5.5±14.5	<0.001	66	-5.6±21.0	0.04	0.97
End-systolic diameter — cm	146	-0.1±0.6	0.06	67	-0.0±0.6	0.86	0.38
Ejection fraction — %	144	-2.8 ± 7.2	<0.001	66	-6.8±10.1	<0.001	0.005
Change from baseline in quality-of-life score†							
30 days							
Physical component summary	147	3.1±9.4	<0.001	64	-4.9±13.3	0.004	< 0.001
Mental component summary	148	4.4±11.3	<0.001	64	1.8±13.4	0.29	0.14
12 months							
Physical component summary	132	4.4±9.8	<0.001	60	4.4±10.4	0.002	0.98
Mental component summary	133	5.7±9.9	<0.001	60	3.8±10.3	0.006	0.24
Severity of mitral regurgitation at 12 mo — no. (%)	153			69			<0.001
0+ (none)		9 (6)	NA		13 (19)	NA	
1+ (mild)		57 (37)	NA		39 (57)	NA	
1+ to 2+ (mild to moderate)		18 (12)	NA		5 (7)	NA	
2+ (moderate)		41 (27)	NA		9 (13)	NA	
3+ (moderate to severe) 46	% -	21 (14)	NA		3 (4)	NA	17%
4+ (severe)		7 (5)	NA		0	NA	/ •


* Plus-minus values are means ±SD. NA denotes not applicable.

† Quality of life was measured with the use of the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36), with scores ranging from 0 to 100, with higher scores indicating better quality of life.

EVEREST II Trial – 5 years

How do I know the outcomes of TEER will never match surgery #1

Edge-to-edge surgical mitral valve repair in the era of MitraClip: what if the annuloplasty ring is missed?

Michele De Bonis, Elisabetta Lapenna, Alberto Pozzoli, Andrea Giacomini, and Ottavio Alfieri

Curr Opin Cardiol 2015 Mar;30(2):155-160.

KEY POINTS

- The results in the long term of the surgical edge-to-edge technique without annuloplasty are not satisfactory.
- In patients without annular calcification, the ringless edge-to-edge repair provides acceptable results in the mid term but is associated with a high failure rate in the long term.
- To improve the long-term outcomes of the currently available transcatheter edge-to-edge procedure, postprocedural residual mitral regurgitation should be minimized by careful patient selection and a concomitant annuloplasty should be added.

How do I know the outcomes of mitraclip will never match surgery #2

The Mitral Valve Complex is Complex

- It's not round nor flat it is saddle-shaped
- Its annulus is not rigid it's dynamic
- It's not passive it contracts, reducing valve area during systole
- It's a high (systolic) pressure closure valve, not a high pressure opening valve
- It's got lots of chords
- It's relatively easy to obstruct the aortic outflow
- It's easier to form thrombus on than the AV
- It has a much larger annulus than the AV
- Its annulus changes size as the heart fails
- MR is not one disease degen vs functional

How do I know the outcomes of mitraclip will never match surgery #2

Aortic valve

Mitral valve

Surgery – this is historic for MR

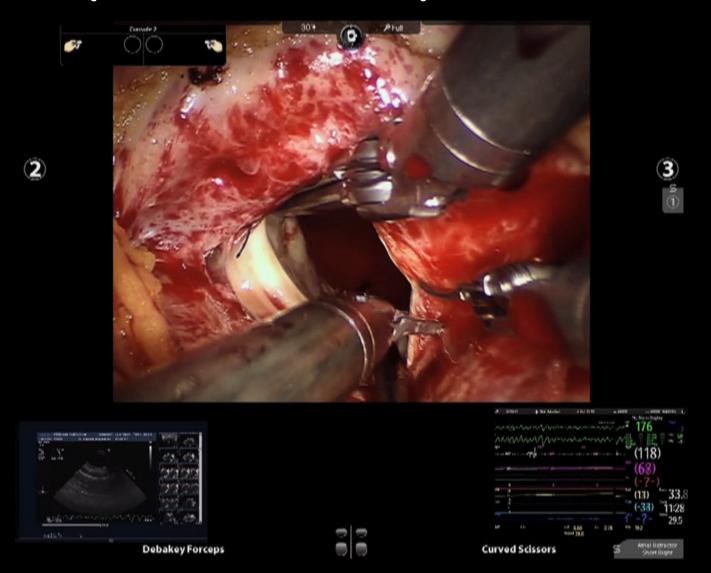
- >1+ AR
- MAC
- Endocarditis with annular abscess

Mini mitral – 4cm

.IMA

Robotic mitral – 2cm

Robotic mitral – 2cm


Post op day 2

Post op day 4

Reoperation with patent LIMA

MI vs Sternotomy Mitral

Minimally invasive mitral valve surgery after previous sternotomy: A propensity-matched analysis

Endoscopic Mitral and Tricuspid Valve Surgery After Previous Cardiac Surgery

Filip P. Casselman, MD, PhD, FETCS; Mark La Meir, MD; Hughes Jeanmart, MD; Enzo Mazzarro, MD; Jose Coddens, MD; Frank Van Praet, MD; Francis Wellens, MD; Yvette Vermeulen, MSc; Hugo Vanermen, MD, FETCS

Minimally invasive right thoracotomy approach for mitral valve surgery in patients with previous sternotomy: A single institution experience with 173 patients

Michele Murzi, MD, Antonio Miceli, MD, PhD, Gioia Di Stefano, MD, Alfredo G. Cerillo, MD, Pierandrea Farneti, MD, Marco Solinas, MD, and Mattia Glauber, MD

Robotic mitral valve surgery after prior sternotomy

Check for upo

Talia G. Meidan, BS,^a Allison T. Lanfear, BS,^a John J. Squiers, MD,^a Mohanad Hamandi, MD,^a Bruce W. Lytle, MD,^b J. Michael DiMaio, MD,^b and Robert L. Smith, MD,^b the Redo Robotic Mitral Valve Surgery Collaborative*

• n=88 pairs

• 30-day mortality MI 3.4% vs ST 8%

• n=80

• O/E mortality 0.24

• n=173

- O/E mortality 0.37
- n=21
- STS predicted risk of mortality 4.2±3.8%
- No mortality

Τ 00/

J Card Surg. 2021;36:3177-3183.

(Circulation. 2007;116[suppl I]:I-270-I-275.)

(J Thorac Cardiovasc Surg 2014;148:2763-8)

JTCVS Techniques • June 2022

Conclusion

- Minimally invasive & robotic surgery gives all the benefits of surgery without the prolonged recovery and no risk of LIMA injury
- Degenerative the outcomes of TEER (immediate MR reduction and durability) will never match surgery
- Functional if operable, remains to be established, e.g TEER vs chordsparing MVR vs repair incl subannular procedures
- Outcomes for patients are best when we work as a team

