Optimising the future of aortic valve therapy: Prosthesis choice in the under 60s

Max Baghai

Kings College Hospital

London, UK

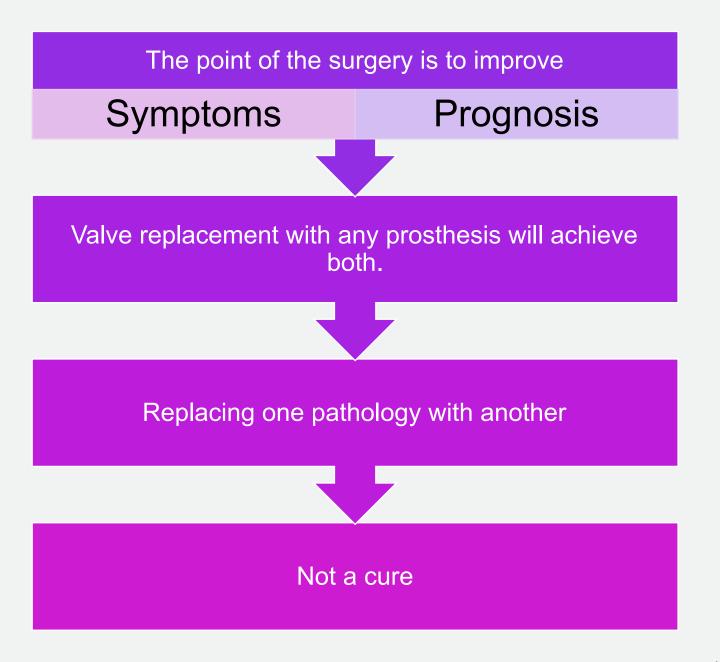
John Taghavi

Royal Papworth Hospital

Cambridge, UK

Aortic Valve Procedures

>300,000 procedures worldwide/year


In UK there are

8,000 surgical AVRs

>6,000 TAVIs

Surgical Valve Procedure

Good haemodynamics

Durable

Low thrombogenicity

No anticoagulation needed

Low rate of endocarditis

Low rate of PPM

Does not exist

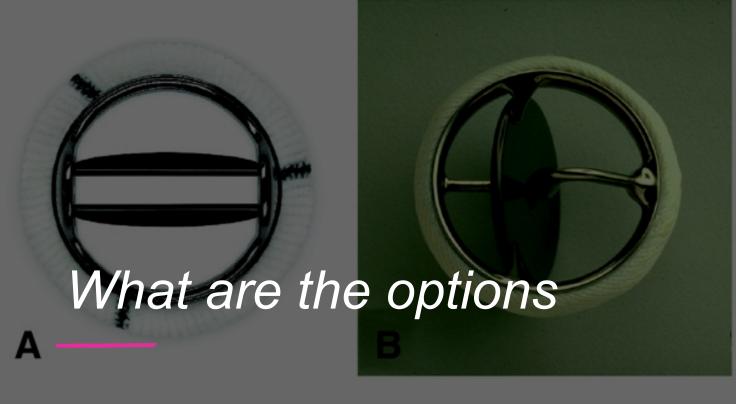
Ideal Prosthesis

Role of the Surgeon

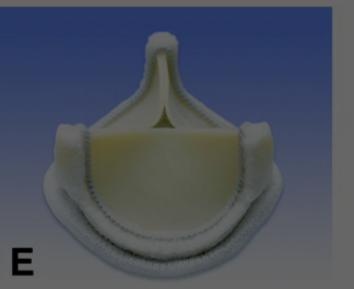
Educate and guide the patient through the choosing process

Provide all options

Refer to guidelines for reassurance


Consider patient factors

Age


Life expectancy / comorbidities

Anticoagulation

Finally accept patient preference

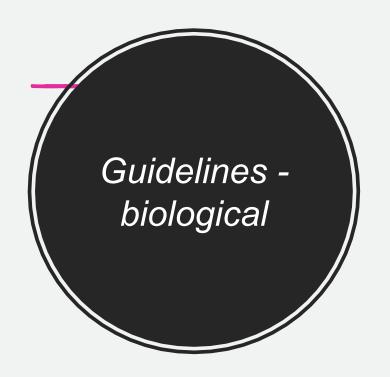
Repair or replace

Biological Vs Mechanical

Anticoagulation Vs Biological prosthesis degeneration

Age Vs Lifestyle

Guidelines



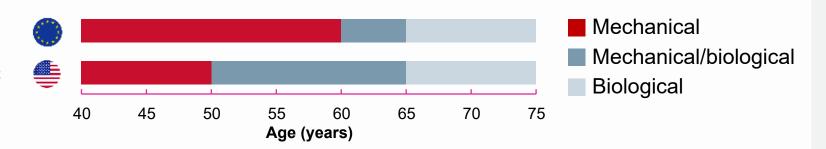
Choice of the aortic/mitral prosthesis in favour of a mechanical prosthesis; the decision is based on the integration of several of the following factors

Recommendations	Classa	Level ^b
A mechanical prosthesis is recommended according to the desire of the informed patient and if there are no contraindications to long-term anticoagulation. ^c	1	С
A mechanical prosthesis is recommended in patients at risk of accelerated structural valve deterioration. ^d	1	С
A mechanical prosthesis should be considered in patients already on anticoagulation because of a mechanical prosthesis in another valve position.	lla	С
A mechanical prosthesis should be considered in patients <60 years of age for prostheses in the aortic position and <65 years of age for prostheses in the mitral position. ^e	lla	С
A mechanical prosthesis should be considered in patients with a reasonable life expectancy ^f for whom future redo valve surgery would be at high risk.	lla	С
A mechanical prosthesis may be considered in patients already on long-term anticoagulation due to the high risk for thromboembolism. ^g	IIb	С

Or TAVI if appropriate

Choice of the aortic/mitral prosthesis in favour of a bioprosthesis; the decision is based on the integration of several of the following factors

Recommendations	Class ^a	Level ^b
A bioprosthesis is recommended according to the desire of the informed patient.	1	С
A bioprosthesis is recommended when good-quality anticoagulation is unlikely (compliance problems, not readily available) or contraindicated because of high bleeding risk (previous major bleed, comorbidities, unwillingness, compliance problems, lifestyle, occupation).	1	С
A bioprosthesis is recommended for reoperation for mechanical valve thrombosis despite good long-term anticoagulant control.	1	С
A bioprosthesis should be considered in patients for whom there is a low likelihood and/or a low operative risk of future redo valve surgery.	lla	С
A bioprosthesis should be considered in young women contemplating pregnancy.	lla	С
A bioprosthesis should be considered in patients >65 years of age for a prosthesis in the aortic position or > 70 years of age in a mitral position or those with a life expectancy ^c lower than the presumed durability of the bioprosthesis. ^d	lla	С


A bioprosthesis may be considered in patients already on long-term NOACs due to the high risk for thromboembolism.^{466–469 f}

IIIb В

© BRC 2022

Guideline recommendations for the treatment of valvular heart disease

Age recommendations based on the 2020 ACC/AHA and 2021 ESC/EACTS guidelines^{1,2}

2020 ACC/AHA and 2021 ESC/EACTS guidelines^{1,2}

- Class I recommendation: prosthetic valve choice should be based on shared decisionmaking
- Patient values and preferences must be taken into account

2020 ACC/AHA guidelines¹

 Class Ila recommendation: for patients aged 50–65 years, individual factors should be considered alongside informed shared decision-making

2021 ESC/EACTS guidelines²

• Class Ila recommendation: for patients 60–65 years, both mechanical and biological valves are acceptable. The decision should be based on factors other than age

	Valve type (%), 2016/19 (aggregate data)		
Hospital	Mechanical	Biological	
UK	17.3	82.5	
King's College Hospital	5.9	94.1	
London Bridge Hospital (PP)	7	93	

Table 27: Proportion of prosthesis types (%) used for isolated Aortic Valve Replacement in the UK over the last 3 years categorised by age of patient (<60; 60-69; >70 years)

	Valve type by ag	Valve type by age group (%), 2016/19 (aggregate data)				
	<60		60-69		≥70	
Nation	Mechanical	Biological	Mechanical	Biological	Mechanical	Biological
UK	60.1	39.9	18.3	81.7	1.8	98.2
England	59.3	40.7	18.6	81.4	1.8	98.2
Northern Ireland	71.3	28.7	12.1	87.9	0.3	99.7
Scotland	78.1	21.9	13.6	86.4	1.0	99.0
Wales	59.5	40.5	18.7	81.3	2.1	97.9

	<60		60-69		≥70	
Hospital	Mech	Biol	Mech	Biol	Mech	Biol
UK	60.1	39.9	18.3	81.7	1.8	98.2
King's College Hospital	26.0	74.0	0	100.0	0	100
Royal Brompton Hospital	27.9	72.1	4.0	96.0	0	100
Southampton General hospital	30.8	69.2	6.3	93.8	9.5	90.5
Manchester Royal infirmary	31.3	68.8	6.7	93.3	4.7	95.3
St Thomas Hospital	37.5	62.5	5.0	95.0	1.2	98.8
Harefield Hospital	40.0	60.0	12.4	87.6	0	100
Glenfield Hospital	43.6	56.4	14.1	85.9	0.8	99.2
Golden Jubilee Hospital	48.1	51.9	18.2	81.8	3.7	96.3
Basildon Hospital	52.5	47.5	5.2	94.8	0	100
Hammersmith Hospital	53.6	46.4	5.6	94.4	0	100
Royal Infirmary of Edinburgh	53.7	46.3	12.6	87.4	7.3	92.7
Freeman Hospital	53.7	46.3	18.1	81.9	1.4	98.6
Blackpool Victoria Hospital	54.3	45.7	12.5	87.5	1.1	98.9
Nottingham City Hospital	54.5	45.5	37.4	62.6	5.6	94.4

Derriford Hospital	54.9	45.1	12.7	87.3	0.6	99.4
Bristol Royal Infirmary	56.6	43.4	12.8	87.2	2.6	97.4
Royal Sussex County Hospital	60.0	40.0	3.7	96.3	0	100
Liverpool Heart and Chest Hospital	62.8	37.2	14.0	86.0	0.8	99.2
Aberdeen Royal Infirmary	63.2	36.8	14.8	85.2	0	100
Papworth Hospital	64.7	35.3	8.7	91.3	0.5	99.5
St George's Hospital	66.7	33.3	30.8	69.2	2.9	97.1
James Cook University Hospital	66.7	33.3	27.5	72.5	1.3	98.7
Morriston Hospital	68.3	31.7	14.0	86.0	1.1	98.9
John Radcliffe Hospital	69.1	30.9	5.6	94.4	1.3	98.7
Queen Elizabeth Hospital, Edgbaston	70.9	29.1	8.7	91.3	0.8	99.2
Royal Victoria Hospital	71.3	28.7	12.1	87.9	0.3	99.7
Leeds General Infirmary	76.8	23.2	45.8	54.2	9.8	90.2
Barts and the London	77.1	22.9	33.7	66.3	4.6	95.4
Wythenshawe Hospital	77.1	22.9	20.7	79.3	1.0	99.0
University Hospital Coventry	78.3	21.7	11.7	88.3	0	100
University Hospital of North Staffordshire	81.4	18.6	32.9	67.1	0.8	99.2
New Cross Hospital	83.9	16.1	21.3	78.7	1.6	98.4
Castle Hill Hospital	84.8	15.2	36.5	63.5	2.8	97.2
Northern General Hospital	85.1	14.9	51.7	48.3	2.6	97.4

© BRC 2022 15

CLINICAL STUDIES

Cardiac Surgery

Outcomes 15 Years After Valve Replacement With a Mechanical Versus a Bioprosthetic Valve: Final Report of the Veterans Affairs Randomized Trial

Karl Hammermeister, MD, FACC,* Gulshan K. Sethi, MD, FACC,† William G. Henderson, PuD,‡ Frederick L. Grover, MD, FACC,* Charles Oprian, PhD.# Shahbudin H. Rahimtoola, MB, FRCP, MACP, MACC§

Denver, Colorado; Tucson, Arizona; Hines, Itlinois; and Los Angeles, California

OBJECTIVES

The goal of this study was to compare long-term survival and valve-related complications between bioprosthetic and mechanical heart valves.

BACKGROUND METHODS

Different heart valves may have different patient outcomes.

Five hundred seventy-five parients undergoing single sertic valve replacement (AVR) or mittral valve replacement (MVR) at 13 VA medical centers were randomized to receive a

RESULTS

By survival analysis at 15 years, all-cause mortality after AVB was lower with the mechanical valve versus bioprosthesis (65% vs. 75%, p = 0.02) but sor after MVR. Psimary valve factor occurred mainly in patients <65 years of age (bioprosthesis va methanical, 25% vs. 0%, p < 0,001 for AVR and 44% vs. 4%, p = 0,000t for MVR), and in patients 365 years after AVR, primary valve failure in bioprosthesis versus mechanical valve was 9 ± 6% versus (%, p 0.16. Reoperation was significantly higher for biopersthetic AVR (p = 0.004) Bleeding occurred more frequently in patients with mechanical value. There were co metalically significant differences for other complications, including rhromboembolism and all vave-

CONCLUSIONS At 15 years, patients undergoing AVR had a better savingly it he medianical valve than with a bioprosthetic valve, largely because primary valve siders was virtually short with mechanical value. Primary valve failure was greater with begrowthers, both for AVR and MVR, and occurred at a much higher rate in those egod < 65 years in those agod ≥ 65 years. primary valve failure after AVR was not significantly different between Kozmitheis and methanical valve. Reoperation was more common for AVR with biograstics. Themix embolism rares were similar in the two valve positiests, but bleed as var more control with a mechanical valve. U Am Col Cardiel 2000;36:1152-89 @ 2000 by the American College.

The VA Trial

575 patients

- AVR 394
- MVR 181

Outcomes:

- Death
- VR complications

The VA Trial AVR primary valve failure

 At 15 years, patients undergoing AVR had better survival with a mechanical valve Primary <u>valve failure</u>
was greater with
<u>bioprosthesis</u>
especially <65 years

>65 years: primary valve failure after AVR not significantly different

Reoperation was more common for AVR with bioprosthesis

Thromboembolism rates were similar with the two prostheses

Bleeding was more common with a mechanical valve

The Edinburgh Trial

wenty year comparison of a Bjork-Shiley mechanical neart valve with porcine bioprostheses

b Oxenham, P Bloomfield, D J Wheatley, R J Lee, J Cunningham, R J Prescott, I C Miller

Hourt 2000; \$80

Objective: To compare survival and pyteme in patients requiring a mechanical or Separate valve prosthasis.

Design: Randomised prospective tial-

Patients: Between 1975 and 1979, patients were randomised to receive either a Bjort-Oil percine prosheses. The introl valve was replaced in 261 patients, the partic in 211, and be

in 61 patients. Follow up now overages 20 years. Main outcome measures: Death, respectfor, bleeding, embelsin, and excoordits.

Results: After 20 years (see was no difference in survival (Spatialities in parather [SEM]: 25.0 (2.7)% v 22.6 (2.7%, log rank lest a = 0.39) Europerator by valve lating w taken in 91 potients with porcine progheses and in 22 with Bjork Stilley prostess. An endy bining death and respectfor as end points confirmed that Ejerk Shilley potents land imperved with the original prosthesis intact (23.5 (2.4)% v 6.7 (1.6)%, by rook test p < 0.0001), this d became apparent after 4-10 years in parent undergoing mires -cive replacement, and the years in those undergoing acrtic valversolarement. According the drawners common in Bio polients (40.7 (5.4% v 27.9 (8.4% other 2C years, p = 0.008), but there was no eignificant a

Conclusions: Servical with an inted valve is better arrang policely with the bjoth-Skiler solv ing disc proshesis than with a paraire proshesis but there is an atendary morecaed risk of is 533 patients

- AVR 211
- **MVR 261**
- AVR+MVR 61
- Outcomes:
 - Death
 - VR complications

sa end of orticle for

whore all lations

orrespondence to:

r Peter Biografield, apartment of Contiology.

cook, Edinburgh

H3 9YW, UK

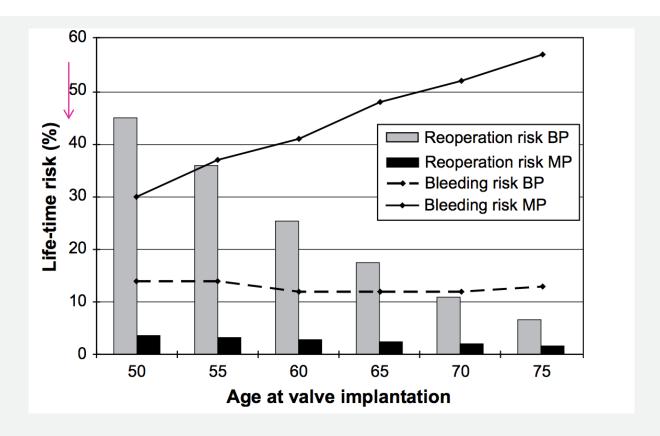
sterl, blogmi jeld@ int soot airs us

ayol 'mirrapry, 1 Lauridon

The Edinburgh Trial

There was no difference in survival between the two groups with regards to aortic valve replacement

No significant difference in rates of valve thrombosis and thromboembolism


Higher rates of bleeding with mechanical prostheses

Higher rates of re-intervention with bioprostheses

Patient outcome after aortic valve replacement with a mechanical or biological prosthesis: Weighing lifetime anticoagulant-related event risk against reoperation risk

Martijn W. A. van Geldorp, MD, MSc,^a W. R. Eric Jamieson, MD,^c A. Pieter Kappetein, MD, PhD,^a Jian Ye, MD,^c Guy J. Fradet, MD,^c Marinus J. C. Eijkemans, PhD,^b Gary L. Grunkemeier, PhD,^d Ad J. J. C. Bogers, MD, PhD,^a and Johanna J. M. Takkenberg, MD, PhD^a

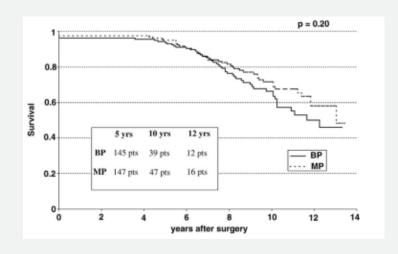
The Journal of Thoracic and Cardiovascular Surgery • Volume 137, Number 4 2009

JACC Vol. 54, No. 20, 2009

Similar survival rate

Similar rate of occurrence of:

thromboembolism


bleeding

endocarditis

adverse prosthesis-

related events

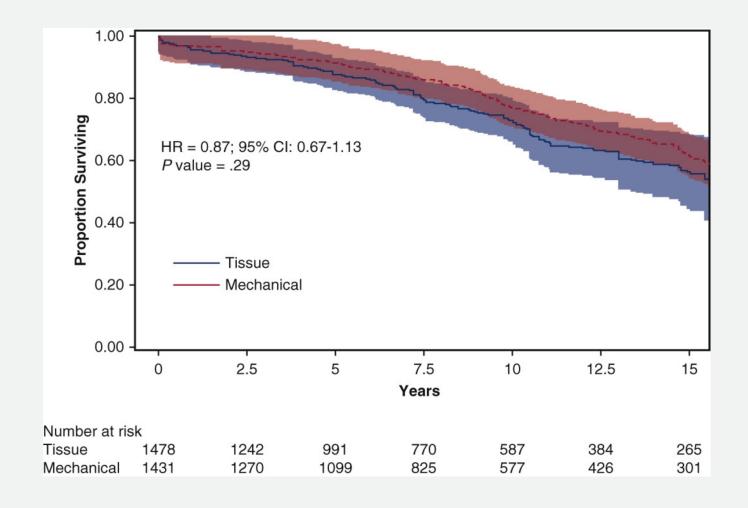
Patients who had aortic valve bioprosthesis had a significantly higher risk of valve failure and reoperation

Aortic Valve Replacement

A Prospective Randomized Evaluation of Mechanical Versus Biological Valves in Patients Ages 55 to 70 Years

Paolo Stassano, MD,* Luigi Di Tommaso, MD,* Mario Monaco, MD,† Francesco Iorio, MD,* Paolo Pepino, MD,† Nicola Spampinato, MD,* Carlo Vosa, MD*

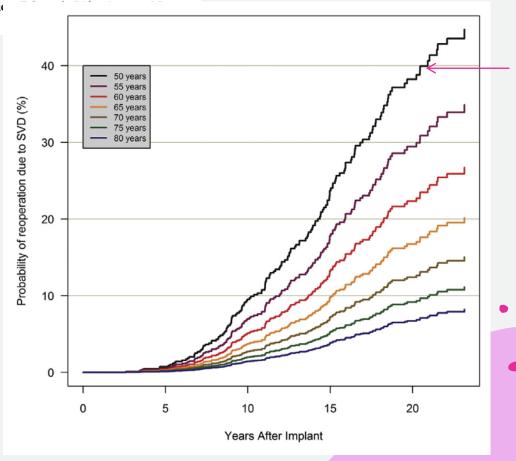
ADULT: AORTIC VALVE


Tissue versus mechanical aortic valve replacement in younger patients: A multicenter analysis

Alexander Iribarne, MD, MS,^a Bruce J. Leavitt, MD,^b Michael P. Robich, MD,^c Gerald L. Sardella, MD,^d Daniel J. Gelb, MD, MS,^e Yvon R. Baribeau, MD,^f Jock N. McCullough, MD,^a Paul W. Weldner, MD,^g Robert A. Clough, MD,^b Cathy S. Ross, MS,^e David J. Malenka, MD,^e and Anthony W. DiScipio, MD,^a for the Northern New England Cardiovascular Disease Study Group

Multicenter, retrospective analysis of isolated AVRs 9388 Patients aged 50 to 65 years

No difference in adjusted long-term survival according to prosthesis type, but tissue valves were associated with a higher risk of reoperation.


Very Long-Term Outcomes of the Carpentier-Edwards Perimount Valve in Aortic Position

Thierry Bourguignon, MD, Anne-Lorraine Bouquiaux-Stablo, MD, Pascal Candolfi, PhD, Alain Mirza, MD, Claudia Loardi, MD, Marc-Antoine May, MD, Rym El-Khoury, MD, Michel Marchand, MD, and Michel Aupart, MD

Department of Cardiac Surgery, Tours University Hospital, France; and Department of Biostatistic Switzerland

Reoperation for SVD at 20 years 40%

(Ann Thorac Surg 2015;99:831–7) © 2015 by The Society of Thoracic Surgeons

Special circumstances

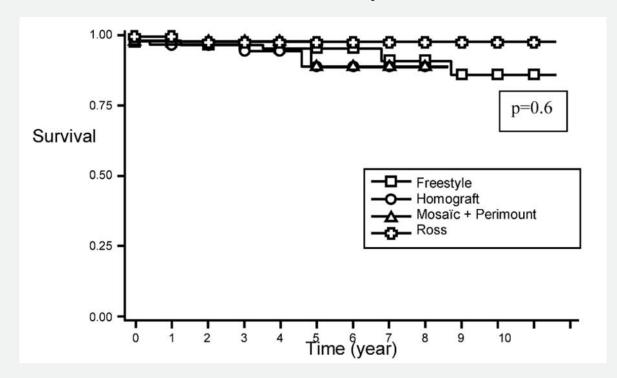
Pregnancy

Endocarditis

Very young

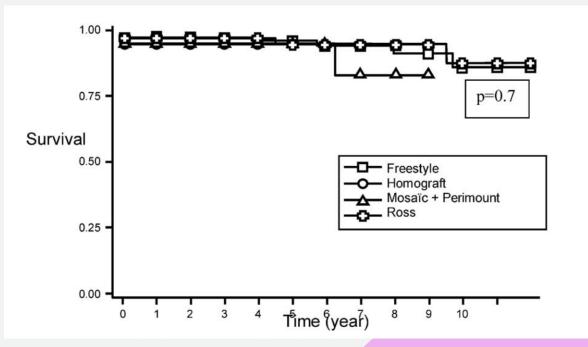
Renal disease

© BRC 2020 25


Lifetime management of 40-60 yr olds

- Mechanical
- SAVR with/without ARE >> ViV >> ViV/Redo SAVR
- TAVI >> ViV >> SAVR

What about homograft, stentless, Ross...


Freedom from reoperation

Which biologic valve should we select for the 45- to 65-year-old age group requiring aortic valve replacement?

F. Dagenais, MD, P. Cartier, MD, † P. Voisine, MD, D. Desaulniers, MD, J. Perron, MD, R. Baillot, MD, G. Raymond, MD, J. Métras, MD, D. Doyle, MD, and P. Mathieu, MD

Freedom from cardiac death

New options

TAVI

Minimal access surgery with sutureless valves

Valve in valve

Ozaki procedure

TAVI Extract 25-10-2021 TAVI for Aortic Bioprosthetic Valve Failure 2018/19 2019/20 2020/21 To Contents

Valve in valve

Conclusion

Safe procedure resulting in hemodynamic improvement in the majority of patients.

Residual stenosis is a common finding which can be observed in 25%

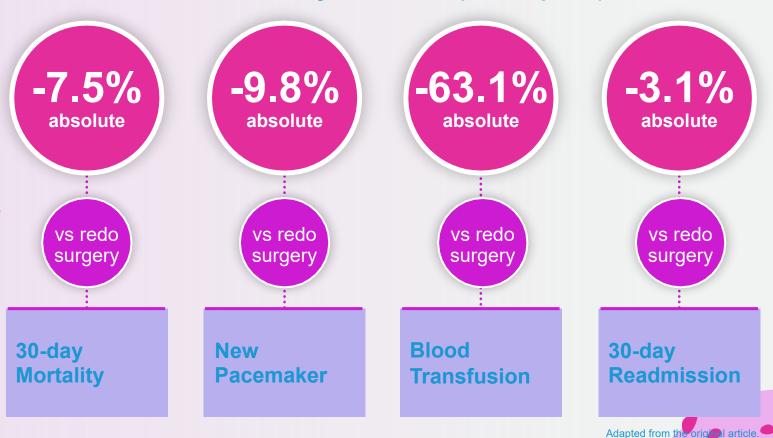
Clinical Research in Cardiology (2019) 108:83–92 https://doi.org/10.1007/s00392-018-1326-z

ORIGINAL PAPER

Transcatheter valve-in-valve implantation (VinV-TAVR) for faile surgical aortic bioprosthetic valves

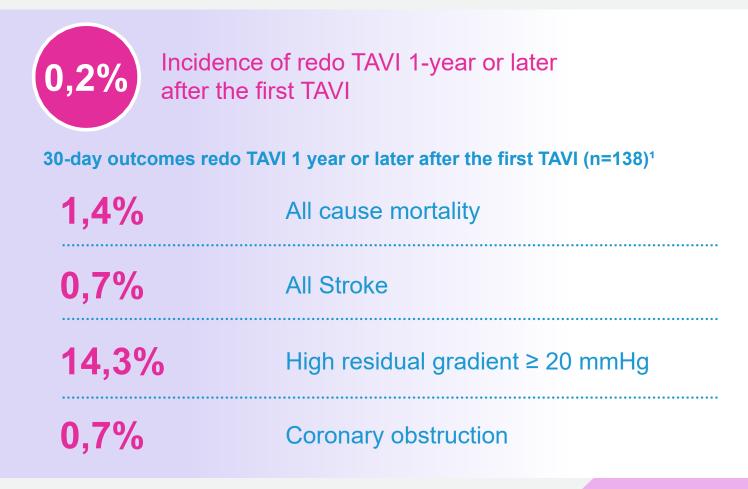
Bernhard Wernly 1 \odot · Ann-Katrin Zappe 2 · Axel Unbehaun 3 · Jan-Malte Sinning 4 · Christian Jul Stephan Fichtlscherer 7 · Michael Lichtenauer 1 · Uta C. Hoppe 1 · Brunilda Alushi 2 · Frederik Bernhardte Wewetzer 2 · Marcus Franz 8 · Daniel Kretzschmar 8 · Eliano Navarese 9,10,11 · Ulf Landm Volkmar Falk 3,12,13 · Alexander Lauten 2,12

Received: 17 May 2018 / Accepted: 26 June 2018 / Published online: 12 July 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018, corrected publication August/2018

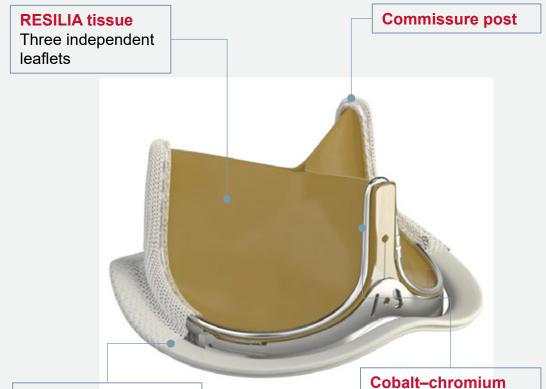


Valve-in-valve TAVI is an important component of this lifetime planning

"Valve-in-Valve TAVI may be the preferred approach for the treatment of failed biological prostheses"¹


Matched 30-day outcomes (n=131 pairs)¹

^{1.} Tam DY, Dharma C, Rocha RV, et al. Transcatheter ViV Versus Redo Surgical AVR for the Management of degenerated Biological Prosthesis: Early and Late Outcomes in a Propensity-Matched Cohort. JACC Cardiovasc Interv. 2020;13(6):765-774.


Despite being a relatively uncommon procedure, early aortic THV-in-THV outcomes are encouraging*

"In the future, redo-TAVI may play a key role in treating patients whose life expectancy exceeds valve durability"¹

^t Aortic THV-in-THV

INSPIRIS RESILIA aortic valve (model 11500A)

Silicone sewing ring

Covered with a porous seamless cloth, which helps the growth of heart tissue on the prosthesis

alloy band Compliance reduces loading shock and stress on the leaflets during the

cardiac cycle

Design characteristics

- Low profile for patients with a small aortic root
- Flexible, cobalt–chromium alloy wireform
 - Corrosion resistant
 - Good spring efficiency and fatigue resistance
 - Covered with a polyester fabric
- Scalloped silicone sewing ring
 - Conforms to the natural aortic annulus and fits against an irregular or calcified tissue bed
 - Has three equally spaced suture markers to help valve orientation and suture placement
- Integrated valve holder facilitates valve handling and suturing during implantations, and is detached by the surgeon

RESILIA tissue out-performs standard PERIMOUNT valve in juvenile sheep study

Flameng W et al. J Thorac Cardiovasc Surg. 2015; 149: 340-5

Aim

To assess the effects of a novel advanced tissue preservation technology on valve function and durability in a juvenile sheep model

Methods

- 45 juvenile sheep received either a standard PERIMOUNT mitral valve (control group) or a PERIMOUNT mitral valve incorporating RESILIA tissue (test group)
- TTE was performed at 1 week and 8 months post-operatively
- The animals were killed and the valves were examined radiographically, histologically and chemically

Results

- Both groups showed normal valve function at 1 week
- At 8-month follow-up, 31 sheep were in perfect condition
- 64% of valves in the control group developed moderate-to-severe turbulence vs 6% in the test group (p=0.0008)
- Cardiac output increased to the same extent in both groups (vs baseline, p<0.01)

Mean gradient across both valve groups

INSPIRIS RESILIA valve registry for young patients demonstrates excellent haemodynamics and good safety up to 1 year

- 1. Meuris B et al. J Cardiothorac Surg. 2020; 15: 119;
- 2. De Paulis R et al. Presented at the European Association for Cardio-Thoracic Surgery annual meeting, 2021

Results

IXCOURTS			
Patient characteristics	Age ≤50 years (n=103)	Age 51–60 years (n=332)	p value
Age, years ± SD	43.5 ± 7.7	56.6 ± 2.7	N/A
Female, %	25.2	22.0	0.491
EuroSCORE II, % ± SD	1.7 ± 1.7	1.5 ± 1.6	0.347
NYHA class III or IV, %	30.1	25.4	0.344
Dominating aortic valve: Stenosis, % Regurgitation, % Severe AR without/trace stenosis, %	61.8 33.3 19.6	74.7 20.8 11.4	0.011 0.009 0.034
Bicuspid aortic valve, %	82.5	70.5	0.016
CAD, %	17.6	25.1	0.121
Diabetes mellitus II, %	6.8	15.4	0.025
Hypertension, %	31.1	55.7	<0.001

	Median (IQR)	Min-max
Cross-clamp time, min	70 (56–89)	29–169
CPB time, min	89 (73–117)	33–222
Operation time, min	187 (156–233)	64–438
Length of stay: Hospital, days ICU, hours	7.0 (6–10) 29.5 (22–56)	1–33 0–582

Younger patients (≤50 years) were more likely to have bicuspid valves or AR at baseline

Older patients (51–60 years) were more likely to have a ortic stenosis, hypertension or diabetes at baseline

^{1. &}lt;u>Durability of bioprosthetic aortic valves in patients under the age of 60 years - rationale and design of the international INDURE registry</u>;

^{2.} Surgical aortic valve replacement in patients under 60 years old: A prospective, multicentre real-world registry in Europe and Canada

INSPIRIS RESILIA valve registry for young patients demonstrates excellent haemodynamics and good safety up to 1 year

- 1. Meuris B et al. J Cardiothorac Surg. 2020; 15: 119;
- 2. De Paulis R et al. Presented at the European Association for Cardio-Thoracic Surgery annual meeting, 2021

Outcomes, n/N (%)*	30 days	3–6 months	1 year	
All-cause mortality	4/434 (0.9)	3/392 (0.8)	1/196 (0.5)	
Valve-relatedness of mortality Valve-related Not valve-related Unknown	0/434 (0.0) 2/434 (0.5) 2/434 (0.5)	0/392 (0.0) 2/392 (0.5) 1/392 (0.3)	0/196 (0.0) 0/196 (0.0) 1/196 (0.5)	Low rates of
Repeated procedure	0/434 (0.0)	2/381 (0.5)	1/189 (0.5)	all-cause
Stroke	2/425 (0.5)	1/382 (0.3)	0/190 (0.0)	mortality and endocarditis
Life-threatening bleeding	16/434 (3.7)	0/382 (0.0)	0/197 (0.0)	311.000.000.000.000
Pacemaker implantation	17/434 (3.9)	2/381 (0.5)	0/196 (0.0)	
Endocarditis	0/434 (0.0)	2/377 (0.5)	0/189 (0.0)	
Valve thrombosis	0/434 (0.0)	3/379 (0.8)	1/191 (0.5)	
SVD stage 3 [†] New/worsening of transprosthesis regurgitation ≥2 grades Worsening of mean PG ≥20 mmHg + EOA ≥0.6 cm² + DVI ≥0.2	0/434 (0.0) 0/409 (0.0)	N/A N/A	0/160 (0.0) 0/157 (0.0)	No stage 3 SVD

Conclusion

INDURE registry data indicate excellent haemodynamic outcomes. Preliminary safety outcomes up to 1 year show low all-cause mortality and endocarditis rates, and no stage 3 SVD

^{*}Follow-up data for each time point represent additional new events; †As defined by Salaun E et al. Heart. 2018; 104: 1323-32

^{1. &}lt;u>Durability of bioprosthetic aortic valves in patients under the age of 60 years - rationale and design of the international INDURE registry</u>;

^{2.} Surgical aortic valve replacement in patients under 60 years old: A prospective, multicentre real-world registry in Europe and Canada

Large multicentre study of RESILIA tissue valve shows favourable outcomes through 5 years

Bavaria J et al. Ann Thorac Surg. 2022; doi: 10.1016/j.athoracsur.2021.12.058

Aim

To present 5-year results from the COMMENCE trial, evaluating safety and effectiveness after AVR with the RESILIA tissue valve

Methods & patient population

- Prospective, multicentre single-arm trial
- 689 patients (mean age 66.9 ± 11.6 years) with symptomatic AV disease who underwent SAVR
 - Model 11000: tri-leaflet valve identical to the PERIMOUNT Magna Ease valve except for RESILIA tissue leaflets

Results

■ Mean gradient at 5 years: 11.5 ± 6.0 mmHg

■ Mean EOA at 5 years: 1.6 ± 0.5 cm²

■ PVL: 97.8% none/trace

■ Transvalvular regurgitation: 96.3% none/trace

Results support durability over the observational period

Limitations

Longer-term follow-up required and ongoing

Endpoint	Early (≤30 days) events, n (%)	Probability event free at 5 years, % (95% CI)
All-cause mortality	8 (1.2)	89.2 (86.7–91.6)
Stroke	11 (1.6)	94.5 (92.7–96.3)
Valve thrombosis	0 (0)	100 (100–100)
Major bleeding	5 (0.7)	94.3 (92.4–96.1)
Endocarditis	0 (0)	97.8 (96.6–99.0)
Major PVL	1 (0.1)	99.5 (99.0–100)
Non-SVD	0 (0)	100 (100–100)
SVD	0 (0)	100 (100–100)
Reoperation	1 (0.1)	98.7 (97.8–99.6)

Conclusion

Five-year results from the COMMENCE trial indicate that the RESILIA tissue valve has a favourable safety profile and stable haemodynamic performance, with no SVD up to 5 years

^{*}One SVD event reported at Post-operative Day 1,848

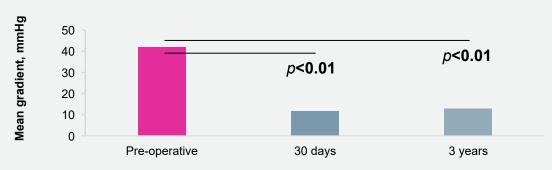
INSPIRIS RESILIA valve performs well in young patients to 3 years

Francica A et al. Presented at the Heart Valve Society Annual Meeting, 2022

Aim

To assess short- and mid-term clinical and haemodynamic outcomes of the INSPIRIS RESILIA valve in young patients

Methods & patient population

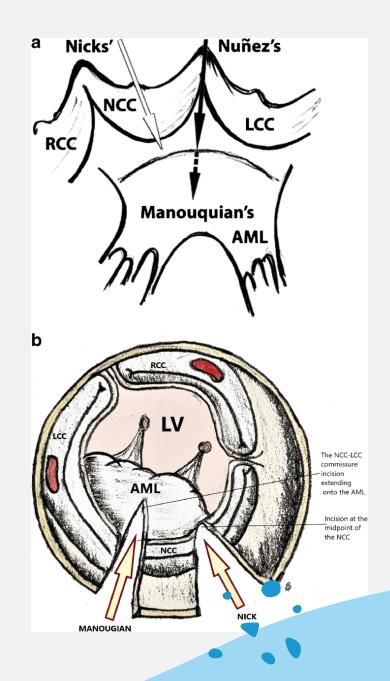

- Single-centre study of 161 adults (mean age 56.8 ± 10.0 years) who underwent SAVR with an INSPIRIS RESILIA valve between 2017 and 2021
- Kaplan–Meier curves used to assess survival, and freedom from reoperation, SVD, endocarditis and rehospitalisation
- Short- and mid-term echocardiographic data assessed

Results

- Overall survival: 99.4% at 30 days; 93.8% at 3 years
- Freedom from cardiovascular death and from SVD: 100%
- 1 patient (0.6%) underwent reoperation for endocarditis
- 2 patients (1.2%) required pacemaker implantation

Patients who had SAVR for AR showed LV reverse remodelling (LVEDV: 123.8 ± 32.5 mL at 3 years vs 238.5 ± 131.04 mL pre-operatively, p<0.01)

Mean gradient in patients with aortic stenosis

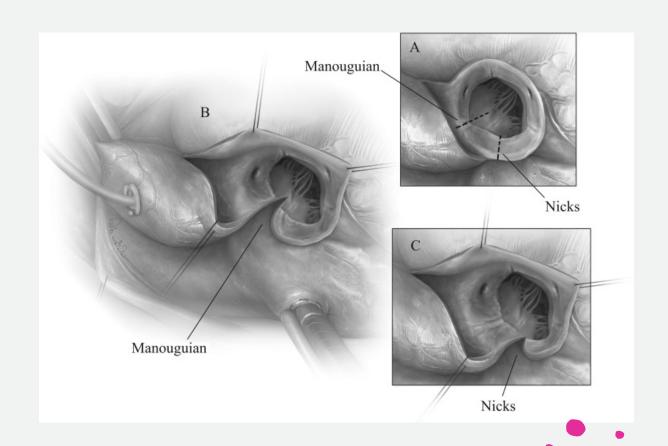

Conclusion

The INSPIRIS RESILIA valve is effective in young patients, with good safety outcomes and excellent short- and mid-term haemodynamic performance

Root enlargement

Types:

- Nicks
- Manouguian
- Nunez (modified Manouguian)
- Kanno-Rastan procedures


Root enlargement

Larger prosthesis

Lower incidence of PPM

Lower incidence of Pacemaker

No significant increase in risk

Over to John

Thank you

What is your choice?

- 1. Mechanical
- 2. SAVR with/without ARE >> ViV >> ViV/Redo SAVR
- 3. TAVI >> ViV >> SAVR

